
DOES THE SAITO-KUROKAWA LIFT HAVE SOMETHING

TO DO WITH T-DUALITY?

GABE KHAN

Jun Zhang and I recently found a “mirror correspondence” between two
spaces which appear in the literature on automorphic forms and algebraic
geometry. At present, this duality is a bit mysterious to me and I’d like to
know if there is some connection to number theory. The main purpose of
this note is to pose several questions related to it. Most of the material is
taken from Section 2 of [2], but I have condensed the exposition to focus on
details which seem relevant to the number theoretic link.

To be concrete, I will focus on the complex two-dimensional case, which
is the lowest dimension where the correspondence is non-trivial and where
we have done most of the computations. However, all of this can be done in
arbitrary dimension (i.e., arbitrary genus). As a disclaimer, I am a geomet-
ric analyst by background and have no expertise in algebraic geometry or
number theory. As such, it is possible that these questions will be ill-posed.

1. Normal Distributions and their Information Geometry

In this section, we provide the information geometric motivation for study-
ing the two spaces of interest. The construction of the spaces will be done
in Section 2, so feel free to skip to that section if you are not interested in
the statistics.

A univariate Gaussian distribution is a probability distribution of the
form1

ρps : µ, σq “
1

?
2πσ

exp

ˆ

´
ps´ µq2

2σ2

˙

.

In this expression, there are two parameters, µ and σ which correspond to
the mean and variance of the distribution, respectively. We can consider
the space of all univariate normal distributions as a parametrized family,
which is a family of probability distributions specified by some number of
parameters (in this case, the mean and variance).

Furthermore, we can consider the space of all univariate normal distri-
butions as a statistical manifold, where the parameters serve as a global
coordinate chart. For any parametrized family of probability distributions,
it is possible to define an associated Riemannian metric, which is known as

Date: today.
1Typically, normal distributions are written in terms of x instead of s. However, I will need
x to mean something else in a moment, which is why I’ve made this notational switch.
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the Fisher metric. Given an arbitrary parametrized family with parameters
tθiu

n
i“1 and sample space S, the Fisher metric is given by the expression

g

ˆ

B

Bθj
,
B

Bθk

˙

“

ż

X

B log pps, θq

Bθj

B log pps, θq

Bθk
ppx, θq ds,

This expression originates in statistics, and it can be interpreted as the
infinitesimal form of the relative entropy. When we calculate the Fisher
metric for normal distributions, we find the following,

g “
1

σ2
pdµ2 ` 2dσ2q.

As such, we have the following proposition, which was originally discovered
by Shin-ichi Amari.

Proposition 1. The moduli space of normal distributions is a hyperbolic
half-plane (i.e., has constant negative curvature).

1.1. Normal distributions as an exponential family. There are many
reasons why normal distributions are important in statistics, but for our
purposes the relevant property is that they form an exponential family, which
is a parameterized family of probability distributions of a certain form.

Definition 1 (Exponential family). Given a sample space S, an exponential
family is a parametrized family of probability distributions whose probability
density functions are of the form

(1) ρSps |xq “ hpsq exp

˜

n
ÿ

i“1

xiu
ipsq ´ Φpxq

¸

.

Here h : S Ñ R is a known function which serves to fix a base measure on
S. The parameters are denoted by the xi and take values in some domain
X Ă Rn. When an exponential family is parametrized in this way, the xi
are known as the natural parameters. The functions u : S Ñ Rn are known
as the sufficient statistics. Finally, the function Φ : X Ñ R is known as the
log-partition function, which serves to renormalize the distribution so that
the total mass is one.

In order to write normal distributions as an exponential family, we set

x1 “
µ

σ2
and x2 “ ´

1

2σ2
.

These functions are defined on the domain

X “ tpx1, x2q | x2 ă 0u.

We then take the sufficient statistics to be

u1psq “ s, u2psq “ s2,

which are defined on the set

U “ tpu1, u2q | u1 ¨ u1 ´ u2 ă 0u.
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Finally, the function Φpxq is the following:

Φ “ ´
x1 ¨ x1

4x2
´

1

2
log

´x2

π

¯

.

There is an important information geometric fact about exponential fam-
ilies which are crucial to the subsequent construction.

Proposition 2. When parametrized in terms of the natural parameters x,
the Fisher metric of an exponential family is given by the Hessian of the
log-partition function Φ. That is to say, in the x-coordinates we have

gij “
B2

BxiBxj
Φ.

In this sense, the natural parameters form a set of “preferred coordinates”
for the moduli space. There is also a dual coordinate system, which is induced
by the sufficient statistics. More precisely, we have the following.

(1) Given an exponential family ρSps|x0q, the expected value of the suf-
ficient statistics

ui “

ż

S
uiρSps|x0q ds

also form a coordinate chart for the exponential family.
(2) If we use these expected values as coordinates, the Fisher metric

is given by the Hessian of the Legendre dual of the log-partition
function Φ. In other words, we have

g

ˆ

B

Bui
,
B

Buj

˙

“
B2

BuiBuj
Φ˚,

where

Φ˚puq “ inf
xPX
xx, uy ´ Φpxq.

From here on out, I will drop the overline over u since there will be
no ambiguity.

For the space of normal distributions, the Legendre dual of the log-
partition function is

Φ˚ “ ´
1

2
´ logpu2 ´ u1 ¨ u1q.

This means that in the u-coordinates, the Fisher metric is given by

g “
1

pu1 ¨ u1 ´ u2q
2

„

u1 ¨ u1 ` u2 ´u1

´u1
1
2



.

Since the natural parameters and expectation of the sufficient statistics
can both be understood as different coordinates for the space of all nor-
mal distributions, the metric is always the same and has constant negative
curvature.
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2. Constructing the Statistical Mirrors

In order to construct Kähler manifolds from Hessian manifolds, we first
recall the definition of a tube domain TΩ.

Definition 2. Given a domain Ω Ă Rn, its tube domain is the domain

TΩ “ tz P Cn | Repzq P Ω, Impzq P Rnu.

These will be the primary spaces of interest throughout.

2.1. The primal tube. We first consider the half-space

Ω “ tx1, x2 | x2 ă 0u.

The tube domain TΩ is a half space in C2. Furthermore, we define a Kähler
metric on this space using the potential function

(2) Ψpz1, z2q “ ´
x1 ¨ x1

4x2
´

1

2
log

´x2

π

¯

where zi “ xi `
?
´1yi. In other words, we set

ωTΩ “
ÿ

i,j

?
´1

B2Ψ

BziBz̄j
dzi ^ dz̄j .

This space (with this particular metric) is known as the Siegel-Jacobi
space, and has been studied in terms of modular forms. Its geometry is
interesting, in that it is homogeneous and has constant scalar curvature, but
is not symmetric. The geometry and arithmetic of this space was studied
by Yang [4].

2.2. The dual tube. Note that the Kähler potential Ψ only depends on
the xi’s. This allows us to restrict the function Ψ to Ω (instead of all of
TΩ). The potential Ψ, when restricted to Ω, is strictly convex, so we can
compute its Legendre transform Ψ˚, which is defined to be

Ψ˚puq “ sup
xPΩ

xu, xy ´Ψpxq,

and is defined on the domain

Ω˚ “

"

u P Rn : sup
xPΩ
xu, xy ´Ψpxq ă 8

*

.

Doing so for the potential (2), we find that

Ψ˚ “
1

2
´

1

2
logpu1 ´ u

2
2q,

which is defined on the domain

Ω˚ “ tu1, u2 | u1 ´ u
2
2 ą 0u.

From this, there is a second tube domain

TΩ˚ “ tw “ u`
?
´1v P C2 | u P Ω˚, v P R2u.
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We can also define a Kähler metric using the function Ψ˚, extended to TΩ˚

to be independent of v. Namely, we consider the Kähler form

ωTΩ˚ “
ÿ

i,j

?
´1

B2Ψ˚

BwiBw̄j
dwi ^ dw̄j .

It turns out that TΩ˚ is biholomorphically isometric to the disk, and thus
has constant negative holomorphic sectional curvature (the induced metric
also happens to be the Bergman metric). There is also a rich theory of
automorphic forms on this space (see, e.g., [3]).

3. Remarks

(1) The correspondence between these two spaces is a slight modification
of T-duality, which has been studied in context of mirror symmetry.
However, neither of these spaces are Calabi-Yau (they aren’t Ricci
flat or compact) and there are no “singular fibers.” As such, while
it’s perhaps accurate to call this a mirror correspondence, it’s a very
simple case of it. Furthermore, we are not quotienting the fibers by
a lattice and its dual to have compact fibers.

(2) TΩ and TΩ˚ are not biholomorphic. To see this, note that TΩ˚

is biholomorphic to a unit ball in C2 whereas TΩ contains a com-
plex line. As such, I think the relationship between these spaces is
somewhat complicated.

(3) It is possible to obtain this duality in higher dimensions by con-
sidering the moduli space of normal distributions whose covariance
matrix is ρ Id where ρ is a positive scalar.

(4) There are several papers in the literature which have studied the
geometry of these spaces in depth. Both of these spaces have very
interesting geometry, although it’s not clear to me which properties
are relevant for number theory and algebraic geometry.

4. Questions

These two spaces are interesting from a geometric point of view, but I’m
curious about whether their duality has some applications in number theory
or algebraic geometry. Here are some more specific questions about their
geometry.

(1) Is this duality well known in number theory? If so, is there a stan-
dard reference?

(2) Is it possible to use the duality to say something about the geome-
try/arithmetic of these two spaces?

(3) Here is a more precise (and thus likely incorrect) version of the pre-
vious question.

The Saito–Kurokawa lift takes modular forms on the hyperbolic
half plane H to a distinguished class (a Spezialschar) of Siegel mod-
ular forms on the Siegel half space. This lift can be understood as a
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Figure 1. The Saito-Kurokawa lift

composition of three mappings, with the last map being a map from
certain Jacobi forms (i.e., automorphic forms on TΩ) to certain au-
tomorphic forms (i.e., a Spezialschar) on the Siegel upper half-space.
This space naturally contains TΩ˚ (as the space of symmetric com-
plex matrices whose imaginary parts are positive definite and whose
diagonal elements are equal) and may also have a similar interpre-
tation as a “complexified exponential family.” Keeping in mind that
TΩ˚ and TΩ are both models for the tangent bundle of the hyper-
bolic half plane, this picture suggests that there might be a natural
way to understand the Saito-Kurokawa lift in terms of information
geometry.

(4) If one considers the moduli space of isotropic multivariate normal
distribution instead of univariate normal distributions, the associ-
ated statistical manifold is isometric to hyperbolic n-space and the
dual Kähler metrics are the Siegel upper half space of degree n and
the Siegel Jacobi space

`

H1,n, ds
2
1,n,1,1

˘

(using the notation of [4]).
As a follow up question, is there any correspondence between the
spectral theory of these spaces?

4.1. The Moduli of Abelian varieties. It is possible to interpret the
Siegel half-space as the moduli space of principally polarized Abelian vari-
eties (see Chapter 8 of [1]). As such, one can consider a point in TΩ˚ as
corresponding to the Abelian variety

TM “ C2{
`

MZ2 ` Z2
˘

where M is a complex matrix of the form

M “

„

z1 z2

z2 z1



whose imaginary part is positive definite. Here, the diagonal elements are
equal, so this is not a generic Abelian variety.
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It is of interest whether there is some moduli space interpretation for
the Siegel-Jacobi space TΩ as well. Naively, one may hope that TΩ is the
moduli of a class of dual Abelian varieties with some extra condition, and
that this duality provides the right notion of correspondence between these
spaces.

Question 3. Does TΩ have an interpretation as a moduli space of dual
Abelian varieties?

Furthermore, TΩ and TΩ˚ are not merely complex varieties, but also
Kähler manifolds, which means that they also have a natural notion of dis-
tance and curvature. It is also possible to write down Darboux coordinates
for these spaces, so it is straightforward to compute volumes in these spaces.2

As a result, it seems natural to ask whether these metrics are intrinsically
meaningful for the moduli of Abelian varieties.

Question 4. For genus g curves, the Weil-Petersson metric provides a nat-
ural metric on the moduli space, which provides insight into the geometry
of such surfaces. Does the Kähler metric on TΩ˚ provide an analogy of
a “Weil-Peters son” for a class of principally polarized Abelian varieties?
In other words, can we interpret it as a canonical Kähler metric in order
to induce the “distance” between Abelian varieties? If so, is there a corre-
sponding interpretation for the Kähler metric on TΩ in terms of dual Abelian
varieties?
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