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Abstract. We follow Steven Altschuler’s work on curves in R3 [2] and

generalize the result to show that curves in Euclidean space of any di-

mension become asymptotically planar as they reach a singularity when

deformed by curve shortening flow.

1. Foreword

This paper is mainly expository, following Altschuler’s [2] work on curves

in three dimensions while replacing the threes with n’s but we introduce a

conjecture and a heuristic argument in the final section as well. We aim for

this to be an accessible and mostly self-contained exposition, introducing

the work in a way that can be understood by an undergraduate interested

in the subject. There are three main problems that we explore. The first

is the proof that flow continues so long as the curvature is bounded, a

result due to Altschuler and Grayson [5]. The second proof is to show that

when a singularity occurs the curve becomes roughly planar. We follow the

approach done by Altschuler but use generalized Frenet frames so that it

holds in any dimension. Finally, we refer back to Altschuler’s work and

discuss the limiting the shape of the curve as they become singular.

I have been very fortunate to have a great deal of help while working on

this project and owe many thanks to various people for their indispensable

help and insightful suggestions. In particular, I would like to thank Profes-

sor Glen Hall, Osman Choudhary, George Silvis, Mizan Khan, and Sigurd

Angenent. This was done as a thesis for Work for Distinction at Boston

University.
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2. Introduction

Let γ be a smooth immersion from S1 to Rn. We then define the following

differential equation.

(1) ∂tγ = κN

where κ is the curvature and N is the unit normal vector. We will study

solutions to this equation, which consist of a family of curves γt with t ∈
[0, ω) which satisfy (1) with γ0 = γ.

This is commonly referred to as curve shortening flow. When we compute

the derivative of the length of the curve, we see that this flow is in some

sense shortens the curve as quickly as possible in that it gives a gradiant

flow for the length, which is where it gets its name. While there are not

many examples that can be explicitly computed, there is one example that

can be done easily. If one has a circle of radius R, the flow shrinks the

circle homothetically (preserving the shape) to a point in time
√
R. A video

showing curve shortening act on an a curve in the plane can be found at [4]

which gives an excellent demonstration of the flow.

This flow has been studied extensively for 25 years, though most of the

work has gone into curves in R2. The behavior of the curves in the plane is

relatively well understood. Work by Richard Hamilton, Michael Gage and

Matthew Grayson in the mid 1980’s proved that embedded loops become

convex and approach a circle before disappearing to a point. Non-embedded

curves can have different limiting behavior; it is possible for a cusp to emerge

or for the curve to approach a different shape as it converges to a point.

Due to the work of Gerhard Huisken, Sigurd Angenent, Uwe Abresch, Joel

Langer and others, the possible limiting shapes are well understood. Abresch

and Langer were able to classify all of the curves whose behavior is similar

to that of the circle in that they shrink homothetically [1] and that an

arbitrary curve often approaches one of these curves as it deforms under

curve shortening flow. In this paper we show that a curve in n-dimensional

space becomes asymptotically planar as it shrinks. This was originally done

for curves in R3 by Steven Altschuler. For higher dimensions, we can make
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modifications to his results so that they hold in n-dimensions as well. As a

result, we call the final planarity result Altschuler’s theorem as his method

is the one used to prove the result.

As we begin our journey into this problem in geometric analysis, we are

able to skip the two parts that are often most difficult for any partial differ-

ential equation, short-term existence and uniqueness of the solutions. Gage

and Hamilton proved both for the most general case of the flow (a closed

immersed submanifold of a Riemannian manifold flowing by its Laplacian)

in their 1986 work. As part of their existence and uniqueness work, they

proved that for any C2 curve, for all time after zero that the flow is de-

fined, the resulting curve is real analytic [7]. Therefore we will consider C∞

curves, without loss of generality, and also refer to real analyticity occasion-

ally. Rarely is it ever needed to complete an argument but it occasionally

simplifies the proof. In two-dimensional curve-shortening flow, the tech-

niques used to show that embedded curves approach a circle and shrink to

a point are largely geometric. Spatial curves do not lend themselves to such

geometric methods so easily and so the best way to attack the problem is by

estimating the evolutions of the curvature and other geometric quantities.

The natural quantities to study are those given by the Frenet frames.

In order to study curves in arbitrary dimensions, we use generalized Frenet

frames in a way originally done by Camille Jordan [11]. In a sense that can

be made precise, the curvature measures how quickly the curve deviates

from a straight line and the torsion measures how quickly the curve deviates

from its osculating plane. We can define other torsions using this same

idea. This gives us a general frame and we can express the derivatives of the

various vectors as such. By defining the vectors in the frame to point in the

appropriate direction, we can choose the curvature and all of the torsions to

be positive.
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3. Notation

Here we review some of the notation used. To save space we wish to use

the most concise possible notation for derivatives so we often denote

∂n

∂xn
as ∂n

x .

If we wish to differentiate with respect to several variables we write

∂n+m

∂xk∂ym
as ∂n

x∂
m
y .

Since many of the partials do not commute, the order is important and so

we have used this convention to make the order completely clear. We will

use the following convention for the Frenet frame.

(2) ∂s



T

N

B1

...

Bn−2


=



0 κ 0 0 · · · 0

−κ 0 τ1 0 · · · 0

0 −τ1 0 τ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −τn−2 0





T

N

B1

...

Bn−2


This resembles the three dimensional frame and throughout the proof the

third and higher torsions do not play much of a role.

4. Geometric evolutions

We parametrize our curve by a time independent variable u ∈ R/2π. This
is useful because the derivatives of arclength and time do not commute so

having a time-independent variable available allows for the initial calcula-

tions to be done.

We first calculate the derivative of velocity of the curve and from there, the

way the partials with respect to time commute with the partials with respect

to arclength. Since arclength and time are not independent variables, we

cannot just switch the order of the partials. We do have a time independent

variable and if we compute how the speed of the curve changes, then we can

start to figure out how time and arclength are related to each other.
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Let v be the velocity of the curve. Recall that

(3) v2 = ⟨∂uγ, ∂uγ⟩.

We can take the temporal derivative of this expression with respect to time

to get the following.

∂tv
2 = 2⟨∂t∂uγ, ∂uγ⟩ = 2⟨∂u∂tγ, ∂uγ⟩ = 2⟨∂uκN, ∂uγ⟩

= 2
〈
(∂uκ)N − vκ2T + v · κ · τ1B1, vT

〉
= −2v2κ2.

However, ∂tv
2 = 2v · ∂tv = −2v2κ2. So

(4) ∂tv = −κ2v.

Recalling also that ∂s = ∂u/v, we have the very first tool that we use for

the proof. Using what we have just solved for, we can compute two things.

The first is the partial commutator, which is extremely useful. The second

is the derivative of the total length, which explains why the flow is called

”curve-shortening.”

Lemma 1. Curve shortening flow shortens curves.

Proof.

(5) ∂t

(∫ 2π

0
v du

)
=

∫ 2π

0
(∂tv) du = −

∫ 2π

0
κ2v du = −

∫ L

0
κ2ds.

Therefore, the curve is always shrinking. Furthermore, since∫
γ
κds ≥ 2π,

by Jensen’s inequality we know that

−
∫
γ
κ2ds ≤ −4π2

L
≤ −4π2

L(0)

□
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Since the length of the curve is strictly positive whenever the flow is

defined, this shows that the flow is not defined for all time. Therefore there

must be a singularity that prevents existence for all time. This is discussed

in the next section.

As the arclength and time parameters are not independent, we do not

expect their partials to commute. We calculate the commutator as follows:

∂t∂s = ∂t
1

v
∂u =

1

v
∂u∂t + κ2

1

v
∂u = ∂s∂t + κ2∂s

Since we will repeatedly invoke this we number this equation.

(6) ∂t∂s = ∂s∂t + κ2∂s

This allows us to move the temporal derivatives inward, which is very useful

(a priori we only know how γ evolves with time so we need to move time

derivatives inward). However, commuting comes at a cost of an extra term.

Now that we know how partials commute, the next step is to find how the

curvature and first torsion evolve. We do this by calculating the evolutions

of the tangent and normal vectors and then utilizing the Frenet frames to

draw out the terms we want. We start with the curvature.

(7) ∂t∂sT = ∂t(κN) = (∂tκ)N + κ∂tN.

This equation helps us because we know

⟨N,N⟩ = 1 ⇒ ∂t⟨N,N⟩ = 2⟨∂tN,N⟩ = 0

and therefore

(8) ⟨∂t∂sT,N⟩ = ∂tκ.

This calculation tells us that the temporal derivative of curvature is the

coefficient of N when we calculate ∂t∂sT . So

(9) ∂t∂sT = ∂s∂tT + κ2∂sT = ∂s(∂tT ) + κ3N.

Using the commutator and the definition of the tangent vector, we obtain

∂tT = ∂t∂sγ = ∂s∂tγ + κ2∂sγ = ∂s(kN) + κ2T

= (∂sK)N + κτ1B1 − κ2T + κ2T = ∂sκN + κτ1B1.
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Plugging back into the original equation we find

∂t∂sT = (∂2
sκ)N − κ∂skT + τ1(∂sκ)B1 + (∂sκ)τ1B1

+κ∂sτ1B1 − κτ21N + κ3N − κτ21N + κτ1τ2B2,

and so finally

(10) ∂tκ = ∂2
sκ+ κ3 − κτ21 .

The evolution of first torsion is very messy but it can be calculated using

the same idea. We compute ∂tN next.

(11) ∂tN = −(∂sκ)T +
2τ1
κ

(∂sκ)B1 + (∂sτ1)B1 + τ1τ2B2.

This is obtained by considering all the terms not in the normal direction

when we calculated ∂tκN and then dividing by κ. From here we know that

(12) ∂t∂sN = −(∂tκ)T − (∂tT ) + (∂tτ1)B1 + τ1(∂tB1).

So we need to find the appropriate part of the coefficient in front of B1.

There is a part of ∂tT in the first binormal direction as well so we must

disregard this part. By the partial commutator, we know

(13) ∂t∂sN = κ2∂sN + ∂s∂tN.

Substituting in the RHS of (12) into the above, we have that

(14) ∂t∂sN = κ2∂sN + ∂s

(
−(∂sκ)T +

2τ1
κ

∂sκB1 + ∂sτ1B1

)
.

Now we just need to wade through the algebra. The above equation becomes.

∂t∂sN = κ2∂sN − (∂2
sκ)T − ∂sk · κN + ∂s

(
2τ

κ

∂κ

∂s

)
B1

+

(
2τ1
κ

∂sκ

)
(−τ1N + τ2B2) + ∂2

sτB1 +
∂τ1
∂s

(−τ1N + τ2B2).

This simplifies to

∂t∂sN = −κ3T − ∂2
sT − (∂sκ)κN +

(
∂s

(
2τ1
κ

∂κ

∂s

)
+

∂2τ1
∂s2

)
B1

+κ2τ1B1 +
2τ1τ2
κ

(∂sκ)B2 +
∂τ1
∂s

τ2B2.
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Now we only must consider the terms in front of B1 that do not appear

as terms in −κ(∂tT ). Doing this, we finally obtain

(15) ∂tτ1 = 2κ2τ1 + ∂s

(
2τ1
κ

∂sκ

)
+ ∂2

sτ1 − τ21 τ2.

Much later it is helpful to write this equation in the following form:

(16) ∂tτ1 = ∂2
sτ1 + 2

1

κ
(∂sκ)(∂sτ1) +

2τ1
κ

(
∂2
sκ− 1

κ
(∂sκ)

2 + κ3
)
− τ21 τ2.

In theory, one could compute time derivatives of any quantity in the

Frenet frame. In practice this would be very tiresome and so for now we

are done with the frame. We return to it later when we have some more

tools. Working in the frame has given us three equations ((6), (10), and

(16)) which are very useful.

5. Singularities

In the simplest possible terms, a singularity is a time and location on the

curve for which we can no longer continue to deform the curve according

to the equation. In the following section we prove that the curve remains

smooth so long as the curvature remains bounded so the singularities occur

ony when the curvature blows up. As shown in Lemma 1, a singularity must

always occur since the length of the curve is strictly positive and there is

a strictly negative upper bound on the temporal derivative of the length of

the curve. Therefore, studying the behavior of the equation comes down to

analyzing the possible singularities. We would therefore like to know exactly

when these singularities occur and it turns out the flow continues so long κ

is finite everywhere on the curve. This is proved in the following section.

To study the singularity, we pick a sequence of points on the curve and

times (pm, tm) such that tm converges to some time ω and the curvature

at (pm, tm) goes to infinity. We call this a blow-up sequence. Note that

the time ω at which a blow-up sequence occurs is unique because after this

time the flow is no longer defined. Even if there were a way to extend the

equation past this time, we do not do so. The uniqueness of singular times

is actually needed at one point later on. Most of the bounds that we obtain

are in terms of the maximum of curvature at a certain time and if we cannot
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bound the ratio of the maximum curvature to the curvature along the blow-

up sequence then we would run into problems. Therefore, we add a technical

condition to a blow-up sequence and if a sequence satisfies this condition,

we call it an essential blow-up sequence. If we define

(17) Mt = sup
p∈γ

κ2(p, t),

then we do not want our curvature squared along our sequence to be too

much smaller than this value. Therefore we define an essential blow-up

sequence as a blow-up sequence where κ2(pm, tm) ≥ ρMtm for some ρ > 0

and all m ∈ N. An essential blow-up sequence always exists and for many

curves, all blow-up sequences are essential. A curve is planar if it can be

embedded in the plane. For real analytic curves, this is equivalent to τ1 = 0

everywhere on the curve (except inflection points, where it is not defined).

We call a singularity is roughly planar if

lim
m→∞

τ1
κ

= 0

along an essential blow-up sequence (pm, tm). Now that we have defined

these terms, we can properly state the theorems that we wish to prove.

Theorem 2. Given γt a solution to (1) and an essential blow-up sequence

(pm, tm) on γt,

lim
m→∞

(τ1
κ
(pm, tm)

)2
= 0

(i.e. the singularity is roughly planar)

6. Longer Term Existence

Although we know that given a smooth curve, we can always allow curve

shortening to flow for a short amount of time by [7], we do know that some

sort of singularity must arise so this flow cannot occur for all time. We claim

that the flow continues so long as curvature remains bounded. This proof

is originally due to Steven Altschuler and Matthew Grayson in [5]. We do

this by assuming curvature is bounded, and then bounding ||∂n
s T ||2. We do

this by calculating ∂t∂
n
s T .
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(18) Let Mn
t0 = sup

t=t0
||∂n

s T ||2.

Notice that M1
t0 = Mt0 as defined before. We inductively show that

(19) ∂tM
n
t0 ≤ AMn

t0 +B
√

Mn
t0
+ C,

with A,B and C constants. Integrating this inequality, we obtain that Mn
t0

is bounded above by an exponential function and so is finite so long as

curvature is finite.

6.1. Maximum Principle. There is a maximum principle that is very use-

ful for this proof. Since our curve is compact at any time, it achieves its

maximum value at some point p on the curve (we could have defined Mn
t0 in

terms of maximums instead of supremums because of this). At this point

∂2
s ||∂n

s T ||2 ≤ 0

or else p wouldn’t be a maximum. Therefore, if we take the derivative and

find such a term, we can disregard when considering the upper bound of

||∂n
s T ||2. This is very useful because it provides a condition on which we can

disregard certain higher derivatives which is normally very difficult to do.

This idea is often used and is a special case of a much more general principle

of partial differential equations. This version is sufficient for our purposes.

6.2. Initial Bounding Results. We first consider ∂t∂
n
s T . Repeatedly us-

ing the partial commutation rule and recalling κ2 = ||∂sT ||2, we obtain

∂t∂
n
s T = ∂n

s ∂tT +

n−1∑
i=0

∂i
s

(
||∂sT ||2∂n−i

s T
)
.

Remembering that T = ∂sγ, we have

∂n
s (∂t∂sγ) +

n−1∑
i=0

∂i
s

(
|∂sT |2∂n+1−i

s γ
)
.

Commuting the derivative once more, we obtain

∂t∂
n
s T = ∂n+2

s T +

n∑
i=0

∂i
s

(
|∂sT |2∂n−i

s T
)
.
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Now, ∂t||∂n
s T ||2 = 2⟨∂t∂n

s T, ∂
n
s T ⟩. Substituting in, we find

∂t||∂n
s T ||2 = 2⟨∂n+2

s T +
n∑

i=0

∂i
s

(
||∂sT ||2∂n−i

s T
)
, ∂n

s T ⟩

We wish to only consider the terms that contain a derivative of order n or

greater. The other terms can be bounded inductively. Therefore, we obtain

∂t||∂n
s T ||2 = 2

〈
∂n+2
s T + (n+ 1)∂n

s T · ||∂sT ||2+

2⟨∂n+1
s T, ∂sT ⟩T + 2⟨∂n

s T, ∂
2
sT ⟩T

+ 2(n+ 1)⟨∂n
s T, ∂sT ⟩∂sT, ∂n

s T ⟩

+
〈∑

Lower Order Terms , ∂n
s T
〉

The second term comes from differentiating ∂n−i
s T i more times. The

third comes from differentiating ||∂sT ||2 exactly n times. The fourth and

fifth come from differentiating ||∂sT ||2 exactly n− 1 times.

We can manipulate the first term in the following way:

∂2
s ||∂n

s T ||2 = ∂2
s ⟨∂n

s T, ∂
n
s T ⟩

= 2⟨∂n+2
s T, ∂n

s T ⟩+ 2⟨∂n+1
s T, ∂n+1

s T ⟩.

Substituting into the equation above, we find

∂t||∂n
s T ||2 = ∂2

s ||∂n
s T ||2 − 2⟨∂n+1

s T, ∂n+1
s T ⟩+ 2⟨(n+ 1)∂n

s T · ||∂sT ||2

+2⟨∂n+1
s T, ∂sT ⟩T + 2⟨∂n

s T, ∂
2
sT ⟩T

+2(n+ 1)⟨∂n
s T, ∂sT ⟩∂sT, ∂n

s T ⟩

+⟨
∑

Lower Order Terms , ∂n
s T ⟩.

Recalling that the norm of an inner product is less than the product of

the norms and completing the square, we obtain

∂t||∂n
s T ||2 ≤ ∂2

s ||∂n
s T ||2 − 2

(
||∂n+1

s T || − ||∂sT || · ||∂n
s T ||

)2
+

2(n+ 2)||∂sT ||2||∂n
s T ||2 + 4n||∂n

s T ||2||∂2
sT ||+

4(n+ 1)||∂sT || · ||∂n
s T ||2 +(∑

Lower Order Terms
)
· ||∂n

s T ||
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With all of this at hand, we can finally prove that ∂t||∂n
s T ||2 is bounded

whenever curvature is bounded so the flow gives a smooth curve so long as

curvature does not blow up.

Lemma 3. Curve shortening flow (1) does not become singular for a curve

γ where supp∈γ κ
2 is bounded.

Proof.

∂t(M
n
t ) ≤ ∂2

sM
n
t + 2(n+ 2)M1

t ·Mn
t

+4n
√

M2
t ·Mn

t + 4(n+ 1)
√
M1

t ·Mn
t

+
(∑

Lower Order Terms
)
·
√
Mn

t

Suppose κ(p, t)2 ≤ Mt ≤ M for t ∈ [0, α]. As mentioned before ∂2
sM

n
t ≤ 0

so this term can be disregarded. If we can bound Mk
t for all k < n, then

∂t(M
n
t ) ≤ A ·Mn

t +B ·
√
Mn

t + C,

whereA,B, and C are real numbers. We can bound the solution of this

differential equation by an exponential function and so Mn
t is bounded as

well. To finish this as an inductive proof, we must prove the base case and

show that M2
t is bounded. Plugging into the equation, we find

∂t||∂2
sT ||2 = ∂2

s ||∂2
sT ||2 − 2⟨∂3

sT, ∂
3
sT ⟩+ 2⟨3∂2

sT · ||∂sT ||2

+2⟨∂3
sT, ∂sT ⟩T + 2⟨∂2

sT, ∂
2
sT ⟩T + 6⟨∂2

sT, ∂sT ⟩∂sT, ∂2
sT ⟩

+⟨
∑

Lower Order Terms , ∂2
sT ⟩.

Recalling that ⟨T, ∂2
sT ⟩ = ||∂sT ||2 from the Frenet frames, we can simplify

this to

∂t||∂2
sT ||2 ≤ ∂2

s ||∂2
sT ||2 − 2

(
||∂3

sT || − ||∂sT || · ||∂2
sT ||

)2
+8||∂sT ||2||∂2

sT ||2 + 8||∂2
sT ||2||∂sT ||2 + 12||∂sT || · ||∂2

sT ||2

+
(∑

Lower Order Terms
)
·
√
Mn

t .

Repeating the same argument from before, we obtain an exponential

bound on ||∂2
sT ||2. By induction, ∂t||∂n

s T ||2 and ||∂n
s T ||2 are bounded for all
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n whenever curvature is bounded and so the curve remains smooth and the

flow continues. □

7. Altschuler Bounds

The previous bounds were able to solve the existence problem but do not

give us more information about the behavior of the flow. We must produce

stronger bounds due to Altschuler in [2]. These stronger bounds and the

corollary following them are the heart of the theorem from which everything

else can be produced.

Lemma 4. On the interval [
tm, tm +

1

8Mtm

]
,

we have that

(20) ||∂n
s T ||2 ≤

cnMtm

(t− tm)n−1
.

Proof. We use another inductive proof. We start with ||∂2T ||2. Plugging

into the relevant equation, we find

∂t||∂2
sT ||2 = ∂2

s ||∂sT ||2 − 2||∂2
sT ||2 + 4||∂sT |4 +

(
2 · ∂s||∂sT ||2

)
· ⟨T, ∂sT ⟩.

However, the last term is zero since the tangent vector is a unit vector.

Therefore,

∂t||∂2T ||2 ≤ ∂2
s ||∂sT ||2 + 4||∂sT ||4

.

By the same maximum principle used before, at the point where curvature

is maximized, ∂2
s ||∂sT ||2 ≤ 0 and so

∂tMt ≤ 4 · (Mt)
2.

Now this differential equation we can explicitly solve by separation of vari-

ables and then integration. Upon doing so, we obtain that

− 1

Mt
+

1

M0
≤ 4t.

Therefore, if t ≤ 1/(8 ·M0), then

Mt ≤ 2 ·M0.
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The fact that we are starting from t = 0 in this proof is of no consequence

because the flow is not time dependent and so any solution can be translated

in time to this starting time.

Altschuler now has a clever idea, which is to try to establish

(21) ∂t

(
n∑

i=0

ai t
i−1||∂i

sT ||2
)

≤ An ·M0 for some An, ai ∈ R

The reason to do this is that ∂t||∂n
s T ||2 contains the term −2||∂n+1

s T ||2

so we expect that if make the ai terms large enough we can eliminate most

of the terms of ∂t||∂n+1
s T ||2. Using this idea,

∂t
(
t · ||∂2

sT ||2 + 4||∂sT ||2
)

≤ ∂2
s

(
t · ||∂2

sT ||2 + 4||∂sT ||2
)
+ ||∂2

sT ||2

−2t
(
||∂3

sT || − ||∂sT || · ||∂2
sT ||

)2
16t · ||∂sT ||2||∂2

sT ||2 − 8||∂2
sT ||2 + 16||∂sT ||4

But ||∂sT ||2 ≤ 2 ·M0 on this interval so

∂t
(
t · ||∂2

sT ||2 + 4||∂sT ||2
)

≤ ∂2
s

(
t · ||∂2

sT ||2 + 4||∂sT ||2
)

+(32M0t− 7) · ||∂2
sT ||2 + 64(M0)

2

However, since

t <
1

8 ·M0
and (32M0t− 7) < 0,

it follows

∂t
(
t · ||∂2

sT ||2 + 4||∂sT ||2
)
≤ ∂2

s

(
t · ||∂2

sT ||2 + 4||∂sT ||2
)
+ 64M2

0 .

At the point that maximizes this function,

∂2
s

(
t · ||∂2

sT ||2 + 4||∂sT ||2
)
≤ 0

and so we can disregard the first term. Therefore, at the supremum of the

function

∂t
(
t · ||∂2

sT ||2 + 4||∂sT ||2
)
≤ 64M2

0 .
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If we now integrate out this differential equation, we find that

t · ||∂2
sT ||2 + 4||∂sT ||2 ≤ 4M0 + 64M2

0 t ≤ 12M0,

and finally

||∂2
sT ||2 ≤

12M0

t
.

We can continue the induction from here, although we will not fill in all

of the details as the algebra quickly becomes unmanageable.

∂t
(
tn−1||∂n

s T ||2
)

≤ tn−1
(
∂2
s ||∂n

s T ||2 − 2(||∂n+1
s T || − ||∂sT || · ||∂n

s T ||
)2

+2(n+ 2)||∂sT ||2||∂n
s T ||2 + 4n||∂n

s T ||2||∂2
sT ||

+4(n+ 1)||∂sT || · ||∂n
s T ||2

+
(∑

Lower Order Terms
)
· ||∂n

s T ||)

+(n− 1)tn−2||∂n
s T ||2.

Now, either

2(||∂n+1
s T || − ||∂sT || · ||∂n

s T ||)2 ≥
1

2
||∂n+1

s T ||2

or ||∂sT || · ||∂n
s T || ≥

1

2
||∂n+1

s T ||.

In the former case, we can repeatedly use the use the Peter Paul inequality

to complete the proof and in the latter case it follows immediately since

||∂sT || · ||∂n
s T || ≤ 2Mt ·

anMt

tn−1
and ≤ 1

8Mt
.

□

7.1. Time Translation. These are useful but do not help us near time

tm. Altschuler produces another clever idea that allows us to turn these

bounds into something much more useful. The idea is to pick ρ such that

ρ ∗ Mt < Mtn for t < tn and use an earlier time so that the bounds can

be expressed in terms of Mtm . We can pick a ρ that satifies this condition

because if there were some sequence of points (p̂k, t̂k) such that along some

subsequence (pmk
, tmk

) of the essential blow-up sequence such that

κ(p̂k, t̂k)

κ(pmk
, tmk

)
= ∞,



16 GABRIEL J. H. KHAN

then there is another blow-up sequence at limk→∞ t̂k = ω̂. But ω̂ ̸= ω or else

the blow-up sequence would not be essential. However, blow-up times are

unique so this cannot happen (this is where uniqueness of blow-up times is

needed). By the continuity of Mt, given a blow-up sequence (pm, tm), there

exists another sequence (p̃m, t̃m) such that

tn = t̃m +
1

32Mt̃m

.

Then, by the previous argument, we know that

Mtm

ρ
> Mt̃m

,

and so

tn +
3ρ

64Mtm

= t̃m +
1

32Mt̃m

+
3ρ

64Mtm

< t̃m +
1

8Mt̃m

.

Therefore, [
tm, tn +

3ρ

64Mtm

]
⊂
[
t̃m, t̃m +

1

8Mt̃m

]
.

Plugging this into the Altschuler bounds,

||∂n
s T ||2 ≤

c̃nMt̃m

(t− t̃m)n−1

which implies,

||∂n
s T ||2 ≤

c̃nMtm

ρ
(

1
32Mt̃m

)n−1 =
c̃nMtm

ρ
·
(
32Mt̃m

)n−1
< c̃n

(
32Mtm

ρ

)n

for all

t ∈
[
tm, tn +

3ρ

64Mtm

]
.

This proves the following bounds.

Lemma 5. Given an essential blow-up sequence (pm, tm), there exists ρ > 0

such that for all

t ∈
[
tm, tm +

3ρ

64Mtm

]
,

(22) ||∂n
s T ||2 ≤ cn(Mtm)

n.
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This result is at the heart of the planarity theorem. It states that on

a certain time interval near an essential sequence, we can bound ||∂n
s T ||2

by particularly nice quantities related to κ2. The exact size of this time

interval is not particularly important, just that the interval is large enough

for certain estimates to go through. We often use this result in the form of

the following corollary, which states the result in terms of the Frenet frame.

Corollary 6. On the time interval I =
[
tm, tn + 3ρ

64Mtm

]
,

c1Mtm ≥ κ2

c2(Mtm)
2 ≥ (∂sκ)

2

c2(Mtm)
2 ≥ (κτ1)

2

c3(Mtm)
3 ≥ (∂2

sκ− κ3 − κτ21 )
2

c3(Mtm)
3 ≥ (2τ1∂sκ+ κ∂sτ1)

2

c4(Mtm)
4 ≥ (κ∂2

sτ1 + 3∂sκ · ∂sτ1 + 3τ1∂
2
sκ

−κ3τ1 − κτ31 − κτ1τ
2
2 )

2.

Proof. We start by differentiating the tangent vector in terms of the Frenet

frame four times.

∂sT = κ ·N

∂2
sT = −κ2 · T + ∂sκ ·N + κτ1 ·B1

∂3
sT = −3κ∂sκ · T + (∂2

sκ− κ3 − κτ21 ) ·N

+(2τ1∂sκ+ κ∂sτ1) ·B1 + κτ1τ2 ·B2

∂4
sT = (κ ∂2

sτ1 + 3∂sκ · ∂sτ1

+ 3τ1∂
2
sκ− κ3τ1 − κτ31 − κτ1τ

2
2 )B1 + . . .

Applying the Bounding Lemma, we obtain the corollary. Note that the

cn constants are the same as in the previous lemma and so depend only on

ρ. □
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This gives us bounds in terms of more useful geometric quantities. While

it may seem arbitrary to stop at the fourth derivative and only consider

certain terms, it turns out that these terms are the ones that are needed

to continue with the proof. Notice that with sufficiently bad vision, the

fourth term looks a lot like ∂tκ where as final term looks like κ · ∂tτ1. This
observation is crucial and explored in the next section.

8. Dissipation Estimates

We wish to show that if we have an essential blow-up sequence, there is a

neighborhood in both space and time in which the curvature remains large.

This motivates the following definition:

Definition. Given d > 0 and (pm, tm) ∈ S1 × [0, ω), we define the neigh-

bourhood N (pm, tm, d) to be the following set

N(pm, tm, d) =

{
(p, t) ∈ S1 × [tm, ω) : disttm(pm, p) ≤

√
d

Mtm

, t− tn ≤ d

Mtm

}
.

Notice that the distances with respect to arclength only depend on the

time tm and is invariant in the t component of (p, t).

Although it may seem arbitrary, there are several reasons to define this

neighborhood as above. Firstly, as curvature varies with spatial dilation

squared, the dimensions satisfy dimensional analysis. Secondly, if one were

to integrate κ3 along an essential blow-up sequence in these neighborhoods,

one would expect that you could bound this quantity from below as the size

of the term is roughly inversely proportional to the size of the region you

are integrating over. We will bound this integral away from zero from below

and show that a similar integral regard τ1 goes to zero and use this to show

the rough planarity. As always, there are technical details and we address

them now.

We must make sure that curvature stays large enough everywhere in the

neighborhood. We show that the curvature cannot dissipate too quickly and

that with the appropriate radius chosen the maximum value of curvature in

a neighborhood is no more that twice the minimum, independent of which

term in the blow-up sequence we consider. We must then do the same thing



CURVE SHORTENING FLOW FOR CURVES IN Rn 19

for torsion, which is the only place where any difficulty in generalizing the

proof from three to higher dimensions might arise. The reasons to do this

for torsion are so that once we show that∫
N(pm,tm,d)

τ21 κ ds dt → 0 as m → ∞,

we can conclude the same thing for the integrand point-wise (This compu-

tation is done in the next section).

Our general strategy is to bound the temporal and spatial derivatives

Altschuler’s growth bounds. Then, by using a first-order Taylor approxima-

tion, we can prevent the quantities from dissipating too quickly in space or

forward time.

8.1. Curvature Dissipation. ∃a1 > 0 depending only on ρ such that

|∂tκ| ≤ a1(Mtm)
3/2

since

|∂tk| =
(
∂2
sk + k3 − kτ2

)
<
√
c3M3

tn + 2 (c1Mtn)
3/2

by growth bound part 2.

As k2(pm, tm) ≥ pMtn ,

k(pm, t) > k(pm, tm)− a1M
3/2
tn t >

√
pMtm − a1M

3/2
tm t

Therefore, there exists a2 > 0 such that

k(pn, t) ≥
|kpm , tm|√

2

for

|t− tn| ≤
a2
Mtm

∃a3 such that

(∂sκ)
2 ≤ a3(Mtm)

2

|∂sκ| ≤
√
a3Mtm

Therefore

k(p, t) ≥ k(pm, t)−
√
a3Mtmt
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Finally,

∃d1 such that k(p, t) >
k(pm, tm)

2
when (p, t) ∈ N(pm, tm, d)

8.2. Torsion Dissipation. We now do the exact same thing for first torsion

and obtain neighborhoods in which

τ1(p, t) >
τ1(pm, tm)

2

∃δ > 0 such that ∀(p, t) ∈ N(pn, tn, d)

τ(p, t) >
τ(pn, tn)

2

From τ1 evolution

(23) ∂tτ1 = ∂2
sτ1 +

2

κ
∂sκ+ ∂sτ1 +

2τ1
κ

(
∂2
sκ− 1

κ
(∂sκ)

2 + κ3
)
− τ1τ

2
2

Starting with Frenet frame calculations,

c4(Mtm)
4 ≥ |∂4

sT |2∣∣∂4
sT
∣∣2 ≥

(
κ∂2

sτ1 + 3∂sκ∂sτ1 + 3∂2
sκτ1 − κ3τ1κτ

3
1 − κτ1τ

2
2

)2
=

(
κ∂tτ1 + ∂sκ∂sτ1 +

τ1
κ
∂2
sκ+

(∂sκ)
2τ1

κ
− 2τ1κ

2 − κ3τ1 − κτ31

)2

We want to bound all of the terms in other than κ∂tτ1 by terms no larger

than α(Mtm)
2 and then apply Young’s inequality to bound κ∂tτ1.

We start with the second term

(∂sk)
2 ≤ c2(Mtm)

2

kτ ≤
√
c2(Mtm)

2

By curvature dissipation,

k2 ≥ ρMtm

2

Applying these equations, we find

(24)
2c

3/2
2 (Mtm)

3

ρMtm

≥ (∂sκ)
2τ1

κ
.
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and so
(∂sκ)

2τ1
κ

≤ α(Mtm)
2

for some α.

The other terms can be bounded using the same technique of plugging

into the Altschuler bounds and then dividing out by a curvature terms if

necessary. For conciseness, we leave the rest of this calculation to the reader.

Therefore, there exists some α such that

c4(Mtm)
4 ≥ |∂4

sT |2 ≥
(
κ∂tτ1 + α(Mtm)

2
)2

Therefore,

|κ∂tτ1| ≤ |1− α|(Mtm)
2

Therefore, there exists an e3 > 0 such that ∂tτ1 > −e3(Mtm)
3/2 and so

exists g4 > 0 such that

τ1(pm, t) ≥ 1√
2
τ1(pm, tm)

for t ∈ [tm, tm + g4/Mtm ]

We can similarly bound ∂sτ1 since we know that

c3(Mtm)
3 ≥ (2τ1∂sκ+ κ∂sτ1)

2

and

2τ1∂sκ ≤ 4c2Mtm

ρ
√
Mtm

Following the same procedure as before, we can finish the proof. For

torsion, we also want to bound torsion from above but this follows immedi-

ately from the bounds from below since they come from bounding terms in

the Taylor’s expansion. We could also easily bound torsion from above by√
c2Mtm/ρ but this approach gives a nicer constant.

We use the smaller of the two dissipation radii (for curvature and first

torsion) or 3ρ/64 to obtain neighborhoods N(pm, tm, d) in which

κ(p, t) >
κ(pm, tm)

2
and 2τ1(pm, tm) > τ1(p, t) >

τ1(pm, tm)

2

.
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9. Planarity

We have obtained all of the bounds that we need for now, we can move on

to actually showing that curves become roughly planar as they become sin-

gular. At this point, the n-dimensional proof is technically finished because

the rest of Altschuler’s results hold in n dimensions as in three.

The technique to show that along a singularity a curve becomes flat ba-

sically follows from taking the derivative of total curvature. Since total

curvature is continuous, if we integrate the derivative of total curvature over

a very short amount of time (in one of the neighborhoods we defined ear-

lier), we can make the result arbitrarily small, even as we converge to a

singularity. We had a heuristic argument earlier to give a lower bound of∫
N(pm, tm, d)κ3, so we can show that (τ1/κ)

2 goes to zero along an essential

blow-up sequence. We must now do this precisely.

9.1. Total Curvature Evolution. Let K =
∫
γ κds be the total curvature

of γ. Then

∂tK = ∂t

(∫
γ
κds

)
= ∂t

(∫ 2π

0
κ · vdu

)
.

Since u and t are independent variables,

∂t

(∫ 2π

0
κ · vdu

)
=

∫ 2π

0
∂t(κ · v)du.

∫ 2π

0
∂t(κ · v)du =

∫ 2π

0
κ(∂tv) + v(∂tκ)du

=

∫ 2π

0
−κ3v + v∂2

sκ+ vκ3 − vκ(τ21 )du

=

∫
γ
∂2
sκ− κ(τ21 )ds

For now we assume that there are no inflection points so that this integral

becomes

−
∫
γ
κ(τ21 )ds+ ∂sκ|∂γ = −

∫
γ
κ(τ21 )ds

Total curvature is always decreasing and is bounded above by the total

curvature at t = 0 and below by 0. Since κ is a continuous function in time
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so is uniformly continuous. Therefore, for all ϵ > 0, there exists δ > 0 such

that ∫ θ+δ

θ

∫
γ
κ(τ21 )ds dt < ϵ

for any time θ.

∫
N(pm,tm,d)

κ(τ21 )ds dt <

∫ tm+ d
Mtm

tm

∫
γ
κ(τ21 )ds dt

since N(pm, tm, d) is a subset of γ during this time. Therefore,

lim
m→∞

∫
N(pm,tm,d)

κ(τ21 )ds dt = 0.

In this calculation we had assumed that there are no inflection points.

Torsion is not defined at inflection points so this calculation seems to be

flawed if the curve has any. There are a few ways to resolve this issue.

A quick argument is that to observe inflection points happen at isolated

points in time by the real analyticity of the solution. Therefore, as long as

the curve is not planar to begin with (in which case we are finished), on a

short time interval any inflection points that appear immediately disappear

since the curvature is real analytic. As such, they are a set of zero measure

and so will not interfere with our integral. Since we do not assume that

torsion is bounded, the fact that torsion blows up around inflection points

does not cause a problem either. There are far more illuminating ways of

circumventing this but they are irrelevant to what we are trying to do.

We have now completed the first part of the planarity argument. What

is left is to establish a lower bound on
∫
N(pm,tm,d) κ

3dsdt. Since κ is roughly

Mtm and the size of N is roughly
(

d
Mtm

)3
, we intuitively expect that this

can be done.

What could go wrong with this idea? There are two potential problems.

The first is if the curvature or torsion decays extremely quickly from their

maximum value then this will not work. However, we have already ruled

this out with our dissipation estimates. The second is subtler. If the arc-

length were to become small very quickly, then it is possible for the integral

of curvature cubed to become very small. We rule this out by showing that
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distances cannot collapse too quickly. With these two facts (and our ρ value

for the sequence), we can finish the proof.

9.2. Distance Collapse. Given two points u1 and u2 on γ at time t0,

dist(u1, u2, t0) =
∫ u2

u1
ds.

∂t dist(u1, u2, t) = −
∫ u2

u1

κ2(s, t)ds

≥ −
∫ u2

u1

Mtds

≥ −2Mtm

∫ u2

u1

ds = −2Mtm · dist(u1, u2, t)

Integrating this inequality for t ∈ [tm, tm + 1
8Mtm

],

dist(u1, u2, t) ≥ dist(u1, u2, tm)e−2Mtm (t−tm)

On this interval, this implies,

dist(u1, u2, t) ≥ dist(u1, u2, tm)e−1/4.

9.3. An Integral Bound and Rough Planarity. We are now ready to

prove the rough planarity theorem from the section on singularities, which

we restate here.

Theorem. Given an essential blow-up sequence (pm, tm),

lim
m→∞

(τ1
κ
(pm, tm)

)2
= 0

Proof. By the previous work on dissipation estimates,

lim inf
m→∞

∫
N(pm,tm,d)

κ3 ds dt ≥
(
ρMtm

2

)3/2 ∫
N(pm,tm,d)

ds dt.

Then, by the distance collapse results, we know that∫
N(pm,tm,d)

ds dt ≥
(

d

Mtm

)3/2

· e−1/4.



CURVE SHORTENING FLOW FOR CURVES IN Rn 25

Combining these two results

lim inf
m→∞

∫
N(pm,tm,d)

κ3 ds dt ≥
(
ρMtm

2

)3/2

·
(

d

Mtm

)3/2

· e−1/4

=

(
ρd

2

)3/2

· e−1/4.

However, by our dissipation estimates, we know that in this neighborhood

(and so along this essential sequence)

lim sup
m→∞

(τ1
κ

)2
≤ lim sup

m→∞

16 ·
∫
N(pm,tm,d) κ · (τ21 ) ds dt∫
N(pm,tm,d) κ

3 ds dt
≤ 0(

ρd
2

)3/2
· e−1/4

□

9.4. Planarity. We give Altschuler’s proof that shows that the curves be-

come planar in a stronger sense as well. Altschuler notes that given γt(s)

a solution of curve shortening flow, if one dilates space by a factor of λ

and time by a factor of λ2, one obtains another solution to the flow. Fur-

thermore, any motion of γt(s) gives a solution to curve shortening flow as

well. Therefore, given an essential blow-up sequence (pm, tm), if one rescales

space by λm so that κ(pm, tm) = 1 for each m, and translates and rotates

λm · γt(s) to obtain the curve γm with γmt (pm) = 0, Tm(pm, 0) = e1 and

Nm(pm, 0) = e2.

For t̃ = λ2
m(t− tm),

∂t̃γ
m
t̃

= κN

(i.e. γm
t̃

is a solution to curve shortening flow) on the interval

[−λ2
mtm, λ2

m · (ω − tm)).

These γm are therefore called renormalized solutions to curve shortening

flow. Since Mtm goes to ∞, λm does and therefore −λ2
mtm goes to −∞. We

now show that there exists a subsequence γmk
t which converges to a smooth

limiting curve γ∞. This curve γ∞ is a solution to curve shortening flow on

the time interval [−∞, 0] and some forward time as well and so is called an

ancient solution of the flow.



26 GABRIEL J. H. KHAN

There is no guarantee that γ∞ is a compact loop so we parametrize the

curves λm by their arclength from the origin.

We define the operator

δt = ∂t + ϕm(s)∂s

where

ϕm(s) =

∫ s

0
κ2ds

Then:

[δt, ∂s] = ∂t∂s + ϕm∂s∂s − ∂s∂t − (∂sϕm)∂s − ϕm∂s∂s

= κ2m∂s − κ2m∂s

= 0

Furthermore, since (pm, tm) is an essential sequence, ρ · sup k2m ≤ 1 and

so by the earlier bounding results, we know

|∂n
s Tm|2 < cn for t < 0

for all n.

Therefore, |∂n
t Tm|2 is also bounded for all n as each one can be expressed

in terms of |∂n
s Tm|2. Finally, since, ϕ(s) ≤ s/ρ, we know that |δtnTm|2 is

bounded for all n and so for any compact subset of R×[−λ2
mtm, λ2

m·(ω−tm)),

we have bounds on all of the mixed operators |δtn∂n′
s T |2 (independent of m).

Since the operators commute, we only need to consider this combination.

Finally, we appeal to the Ascoli-Arzela theorem to show that there is a

subsequence (pmk
, tmk

) on which the tangent vectors converge uniformly for

any compact set in R× [−∞, limm→∞ λ2
m · (ω − tm)). By integrating these

tangent vectors, we obtain the limiting curve γ∞. If the limiting curve is a

closed loop, we just consider one period of this curve. Notice that this curve

is not a line since the curvature at the origin is 1.

We now show that γ is a planar curve. By our integral estimate, we know

that for all N > 0 and ϵ > 0,
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∫ 0

−N

∫
γ∞

κ · τ21 ds dt < ϵ

and so τ1 = 0 whenever κ ̸= 0 in γ∞. Since γ∞ is real-analytic, this shows

that γ∞ actually lies in a single plane. This implies that the higher torsions

also vanish for the renormalized curve.

10. Classification of Singularities

Altschuler’s work goes further than this. He uses theorems by Angenent,

Huisken and Hamilton to specify what the possible shapes of the limiting

curves are. The geometry of these solutions is very interesting and we discuss

this further, although we will not provide the proofs of the next two theorems

here but refer the reader to Altschuler’s work.

To continue we need a few definitions. A blow-up singularity is Type I if

limt→ω Mt ·(ω−t) is bounded and Type II otherwise. In the planar case, the

simplest example of a Type I singularity is the curve approaching a circle

as it collapses to a point. The simplest example of a type II singularity is

of a cusp emerging. Examples of curves that do this are Cayley’s Sextet, a

figure eight curve or a Limaçon with an inner loop.

We simply state the following theorems:

Theorem 7. Given a curve which develops a type I singularity, every blow-

up sequence is essential and the curve approaches a homothetically shrinking

(self-similar) curve studied by Abresch and Langer. For these singularities,

all blow-up sequences are essential.

Theorem 8. Given a curve which develops a type II singularity, there

exists an essential sequence whose renormalized limit is the planar curve

y = −log(cos(x)), which is known as the Grim Reaper Curve.

These are two very powerful theorems and we refer the reader to [2] for

their proof. This essentially classifies any possible singularity of curve short-

ening flow. The Grim Reaper Curve is an interesting curve when studied

independently. Its solution to curve shortening flow exists for all positive

and negative time and flows by translating it across the plane.
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One question remains. When do the first type of singularities occur and

when do the second occur? There are several observations that can be

made although there are few theorems available. Grayson showed that any

embedded curve in the plane shrinks to a point, but if we are dealing with

spacial curves, the situation may become more complicated. We know that

there are limiting planar curves that have self-intersections (Abresch-Langer

solutions) and not every embedded spacial curve approaches a circle.

However, the two different types of singularities give very different behav-

ior and so being able to give conditions under which one or the other occurs

would be a good start.

We first note that given an arbitrary curve it is very difficult to tell which

type of singularity the curve is approaching because we have no way to a

priori way of knowing how far the curve is from developing a singularity.

Therefore, we must try to find quantities that distinguish these types. For-

tunately, Altschuler’s results are very powerful and give us several quantities

that display these behaviors.

Directly from the definitions, we know that given l > 0 and a blow-up

sequence (pm, tm)

lim
m→∞

M(
tm+ l

Mtm

)
Mtm

= 1

for Type II singularities and is either greater than 1 or undefined (if l is too

large) for Type I singularities.

Another potentially useful quantity comes from studying the modified

distortion of the curve. The distortion of a curve was introduced by Mikhael

Gromov in [9] and is often studied in the context of knot theory. Since

embedded curves in Rn can intersect when shortening by (1), the standard

distortion of a curve, which is defined as supp,p′∈γ distint.(p, p
′)/distEuc.(p, p

′)

can blow up before the curve becomes singular. In view of this, we modify

the definition slightly to obtain a useful quantity in this context. Given

p ∈ [0, 2π], let f(p) = p′ where
∫ p′

p κ(γ(u)) · ||γ̇||du = π.

Let

D(γ) = sup
p∈[0,2π]

distint.(p, f(p))

distEuc.(p, f(p))
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This quantity is scale invariant by examining the Grim Reaper curve, we

know that given a type II singularity

lim
t→ω

D(γ(t)) = ∞.

Furthermore, utilizing a lemma by A. Schur and E. Schmidt (Lemma 3.2.3

in [7]), we know that

D(γ(t)) < Mt · L(γ(t))

where L(γ(t)) is the length of the curve. Whenever a type I singularity

emerges, the latter quantity is bounded (since the limiting solution is ho-

mothetically shrinking that quantity is scale invariant). Therefore, both

D(γ(t)) and Mt · L(γ(t)) are bounded for type I singularities.

If one were able to find initial conditions which give control over any of

these quantities, then under those initial conditions, one would be able to

determine what sort of singularity develops. Using this idea, we have the

following conjecture.

Conjecture 9. Given a curve γ that is initially embedded, it develops a

type I singularity.

Consider an embedded curve in Rn that has a segment which approaches

a Grim Reaper Curve and so develops a type II singularity. At some point of

the blow up sequence, the segment will be very similar to the Grim Reaper

Curve and evolve in a similar way. We renormalize the curve along this

segment at some finite step of an essential blow up sequence on this segment.

Now if one considers the normal vectors just past the endpoints of this

segment (for which the total curvature between the two points is exactly

pi), if the segment lies entirely in one plane, then by real analyticity of the

curve, we know the curve is globally planar and so can apply the results from

[8]. However, if the normal vectors point away from each other just past the

endpoints of the segment, the modified distortion decreases on the segment,

and if the normal vectors point out of the plane, torsion is introduced on the

section approaching the Grim Reaper Curve, which contradicts the planarity

theorem (since we are considering the renormalized curve). This heuristic
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is incomplete for several reasons. It lacks a formal argument ruling out the

normal vectors pointing towards the inside of the curve but slightly out of the

plane. It might be possible to generalize the delta-whisker lemma from [8]

for when the curve is very close to being planar and the normal vectors are

close to lying in the plane. Since spatial curves can intersect each other

(but only do so on a discrete set), this seems to be the greatest challenge.

Furthermore, the argument showing that normal vectors pointing out of the

plane would introduce torsion on the segment must be made more precise

although one could probably do this using a short time translation and

obtaining the a blow up sequence which contradicts the planarity theorem.

It is our hope that this argument can be formalized because it would show

that a dense open set of curves in Rn for n > 2 have type I singularities and

that type II singularities, whose archetype is an emerging cusp, are often

avoided.
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