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Chapter 1

Introduction

The topic of this class is real analysis, with a particular focus on measure
theory and integration. Since the qualifying exam will primarily focus on
functions of a single real variable, this will also be our main focus. We will
develop the notion of the Lebesgue integral, which supplants the Riemann
integral by being robust enough to handle fairly pathological functions and
flexible enough to form the basis for modern functional analysis.

The lecture notes and homework are primarily taken from the textbook
by Royden and Fitzpatrick [REF8§|, which is the textbook for this course.
Furthermore, much of the material is taken from previous versions of this
course. In particular, this text is mostly modified from the 2015 lecture
notes by Timothy McNicholl.

1.1 Lecture 1: A review of Riemann integration

In this introductory lecture, we will review some notions of Riemann integra-
tion, which is the historical (and pedagogical) predecessor to the Lebesgue
integral that we will study in this course. We start with some basic defini-
tions.

Definition 1. A partition P of the interval [a,b] is a sequence of real num-
bers (zo,...,Ty) with

a=x0<x1<...Xxp=>b.

Intuitively, the partition cuts up the interval into n subintervals [z;, z;+1].



Definition 2. A real valued function f: R — R is bounded on the interval
[a, b] if there is a positive number M so that

[f(z)| < M
for all x € [a,b].

Here, the domain of f can be any set which contains [a,b], and not
necessarily the entire real line.

Definition 3. Suppose that f is a real-valued bounded function on [a,b].

1. A lower Riemann sum for f on [a,b] is a sum of the form
n
D vi(wy —wj1)
j=1

where (z,...,xy) is a partition of [a,b] and v; < f(x) whenever x €
[2j-1,25]-

2. An upper Riemann sum for f is the same, except now we insist that
vj = f(z) whenever x € [x;_1,x;].

Intuitively, the lower Riemann sum is an under-estimate for the area
underneath the function f(z) whereas the upper Riemann sum is an over-
estimate.




By taking finer and finer partitions of the interval [a, b], we can refine our
estimates for the area under the curve and (hopefully), compute its Riemann
integral.

Definition 4. The lower Riemann integral S is the supremum of all lower
Riemann sums with respect to all possible partitions.

Definition 5. The upper Riemann integle is the infimum of all upper
Riemann sums with respect to all possible partitions.

We say that a function f is Riemann integrable if the lower Riemann
integral is equal to the upper Riemann integral.

Example. If f is continuous on [a,b], then f is integrable.

Proof. Since f is a continuous function on a closed and bounded interval, it
is uniformly continuous. Therefore, for any € > 0, we can find a § so that

[f(z) = fly)| <€

whenever |z — y| < 4.
We then take a partition P whose meshﬂ is smaller than é and consider
the upper and lower Riemann sums

Lp =) flz;)(x; — zj-1)
j=1

and

Up = ), f(@;)(z; —xj-1),
j=1

where z; = argmingefy; ;] f(*) and Tj = argmaz,e(s, , o, f(2)-

We now compare Lp and Up using the uniform continuity of f, we have
the following estimate

F@) (x5 — 1) = > flay) (@5 — zj-1)

j=1

;) — f(z))) (x5 — wj-1)

F
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'In other words, we consider a partition for which z; —z;_; < 6 for all j with 1 < j < n.



For any upper and lower sum, we have that

LP<J<j<UP-

By taking e arbitrarily small, this shows that £ = U. O

In fact, we can Riemann integrate functions which have some disconti-
nuities (and we will prove a much stronger version of the following exercise
later in the course).

Exercise 1. Let f be a bounded real-valued function on [a,b] that is con-
tinuous except possibly at finitely many points. Show that f is Riemann
integrable.

On the other hand, by considering highly discontinuous functions, we
can create functions which are not Riemann integrable.

Non-Example. The function f :[0,1] — R with

Io(x) 1 whenever x € Q
) =
© 0 whenever x ¢ Q

1s not Riemann integrable.

Proof. In any interval (xj_1,x;), there are irrational number. Therefore, if
Z;Zl vj(x; — xj—1 is a lower Riemann sum, then v; < 0 and thus we have
that £ < 0. Similarly, in any interval there are rational numbers, so if
2?21 vj(x; —xj—1 is an upper Riemann sum, then v; > 1 for all j. As such,
uz=1. O

With slightly more effort, it is possible to show that £ = 0 and U = 1,
but the key thing is that they are not equal.

In this previous example, the rational numbers are “small” in that they
are a countable subset of an uncountable space, and thus we might expect

that .
f lgdx = 0.
0

We will later see that this is indeed the case if we use Lebesgue integral.



Figure 1.1: An upper and lower sum for a reasonably discontinuous function

1.1.1 Intuition

The idea of the Riemann integral is to slice a function vertically into narrow
strips which can be approximated by rectangles. However, what this exam-
ple shows is that for functions which are extremely discontinuous, it is not
possible to determine the correct “height” to make the slices.

The idea of the Lebesgue integral is to instead cut vertically, which
transforms the problem from one of determining how high to make the slices
to determining the size of sets.

Figure 1.2: A Riemann sum (left) and an approximation by simple functions
(right)



1.1.2 Why should we care?

At its core, measure theory studies the “size” of sets. In other words, given
a set X, we want a way to determine how large it is. This turns out to be
a fairly subtle question, and one with a long history.

There are many ways to discuss the size of a set. To give two basic exam-
ples, one could start by simply counting the elements of X (i.e., determining
its cardinality)ﬂ Another option for topological spaces is to determine the
dimension of the set. However, our focus is in measurements which corre-
spond to an integral of one form or another.

For some of you, the idea of extending the Riemann integral to integrate
more functions might be interesting and natural. For others, functions which
fail to be Riemann integrable are already quite pathological, so the idea of
extending the integral might appear to be an esoteric pursuit.

However, the significance of the Lebesgue integral is that it is much more
robust than the Riemann integral. Because of this, we will be able to prove
strong convergence theorems, which play a central role in modern analysis,
PDEs, probability, etc. To give an analogy, the mean and intermediate value
theorem play a central role in analysis, but these results do not hold in Q,
but require its metric completion R. In this context, the Riemann integral
is somewhat akin to the rational numbers, and the Lebesgue integral is R.

1.2 Resources

In this section, I have included some references which might be helpful for
your studying.

1. Sheldon Axler wrote a textbook which is freely available online [Ax120].
It’s a bit more elementary than our course, so might be a good place
to start.

2. T highly recommend the textbook by Gerald Folland [Fol99]. This text
considers measures in greater generality from the outset and covers the
material in a different order than the other books though, so might be
a good reference.

3. Terry Tao wrote a introduction to measure theory which is worth read-
ing [Taoll]. It is also available freely online.

2For countable subsets, the cardinality can be phrased as an integral with respect to a
so called “counting measure.”



4. Gerald Teschl wrote a book on functional analysis which discusses a
lot of topics that we cover in the course [Tes9§|. It is freely available
online.

10



Chapter 2

Measurable Sets and their
Measures

In this chapter, we will build up measure theory with the goal of defining
the “length” of a set of real numbers. Our purpose is to motivate the notion
of the Lebesgue measure so we will not start with an abstract definition of a
measure. Instead, we will start with some natural properties of a “length”
and build from there.

There are a few properties of lengths which are “obvious.” For instance,
any notion of length should satisfy that the length of any finite interval [a, b]
is simply a — b. Similarly, the length of any unbounded interval should be
infinite.

Going further, it is natural to request that the length of a finite (or
countable) union of disjoint intervals is the sum of its lengths and that the
length of a subset should be less than the length of its parent.

2.1 Outer measures

We now give our first attempt to define the “length” of a set of real numbers,
which is the outer measure, denoted m™*.

This measure satisfies some of the properties that we desire. For instance,
the outer measure of an interval is its length. The outer measure also has
the advantage that it is very intuitive and well-defined for any subset of the
real numbers. However, this flexibility comes at a cost and we will see that
this attempt fails to have some natural properties we might expect for a
notion of length.

11



For instance, given A, B ¢ R with A n B = ¢, it may be that
m*(A u B) <m*(A) + m*(B).

In order to define the outer measure, we start by defining a “length”
function ¢ : P(R) — R. Here, P(R) denotes the set of subsets of R

1. If I is a bounded interval, then ¢(I) denotes the usual length of I.
2. If I is an unbounded interval, then ¢(I) = oo.

3. If {I;}jer is a countable pairwise disjoint family of imtervalsﬂ7 then

¢ (U 1j> = > uIy). (2.1)

JjeFr jeF
Before moving on, we make some remarks.

1. In Equation all the terms in the right hand side of the equation
are non-negative. Thus, if the series converges it does so absolutely
and the order of summation does not matter.

2. If U is any non-empty open set of reals, there is a countable pairwise
disjoint family of open intervals {I;}jer so that U = (J;cp I;. Thus
£(U) is defined for every non-empty open sets of real numbers.

3. We shall refer to ¢ as the length of U

With this in mind, we now define the outer measure.

Definition 6. Suppose E is a set of real numbers. The outer measure of E,
denoted m*(E), is defined to be the largest real number that is less than or
equal to the length of every open set including E. In other words,

ECUI]}.

jeFr

m*(E) = mf{Z 1(1)

jeFr

Note that this definition is very slightly different from the definition
given in the book. However, this difference is not important.

1'We will often use the notation F to denote a countable set. Such a set may be finite,
which is why we are not using N as our index.

12



Example. There are a few outer measures that can readily be computed.

1.

m*(J) =0
2.

m*(R = o0
3. Let a e R,

m*({a}) = 0
Exercise 2. Show that the outer measure of a countable set is zero.

Proposition 1. The outer measure of an interval is its length.

Proof. Claim 1: (1) < m*(I).

Suppose U is an open set with I < U. There is a countable pairwise
disjoint family of open intervals {I;};er so the U = UjeF I;. Since I is
connected, there is a jo € F' with I < I;,. Therefore,

oIy < U(I;,) < UU).

Taking infimums, we find that ¢(I) < m*(I).
Claim 2: m*(I) < £(1).
We break this part of the argument into two cases

1. I is unbounded. Then ¢(I) = o0, and we are done.

2. If I is bounded, let a be the left end-point and b be the right end-point.

We let € > 0 and take U = (a — €,b + €). We see that I < U. Further-
more, we that that

m*I <LU) = (b—a)+ 2e ={(I) + 2e.

Since epsilon was arbitrary, we see that m*(I) < ¢(I).
O

Let us use what we’ve seen to solve a question from the qualifying exams.

13



Exercise 3 (1997 Qualifying Exam, Problem 6). For every e > 0 and every
subset E of the real numbers, define

N

ne(E) = inf 3 [£ (1)
n=1

where ((-) denotes the length of an interval and the infimum is taken over all
countable collections of open intervals {I1, I, ...} which cover E for which
¢(1I,) < € for all n. Prove the following:

1. Show that p. is an outer measure on the real line.

2. Show that
u(E) :=sup p-(E) = lim p.(E)
e>0 e—07T

3. Show that u(0,1) = +00. (Hint: If one has intervals I, of length < ¢

which cover (0,1), then [¢ (In)]% = ) e_%K(In)-
[e(In)]2

As a challenge (which was not part of the qualifying exam), try to find a
set E for which 0 < u(E) < co. This is an unfair task without any context,
but it’s a good thought experiment anyway.

2.1.1 Monotonicity and translation invariance

We now show that the outer measure has two natural and desired properties
of length, namely that subsets cannot be bigger than the original set (i.e.,
the outer measure is monotonic) and that if you translate a set, its outer
measure remains the same (i.e., the outer measure is translation invariant).

Proposition 2. If A c B c R, then m*(a) < m*(B).

Proof. Suppose A ¢ B < R. If U is an open set that contains B, then it
also contains A. Thus,

inf {¢{(U)B < U} > [inf {{(U)A c U},

and so

14



Definition 7. If A< R and if a € R, then
a+A={a+zx|xzecA}
Proposition 3. Given A c R and a € R, m*(A) = m*(a + A)

Proof. First note that if I is an interval then ¢(I) = {(a + I).
We then note that if {I;}cr is a pairwise disjoint family of intervals,

{a + I;}jer is as well and
a+ UIj = U(a + Ij).

If follows that if U is open £(U) = £(a + U). If U is an open set that
includes A, then a + U includes a + A and has the same length as U. Thus,

inf {{(U)] Ac U and U open } > inf {{(V)|a+ A c U and V open }

and so,
m*(A) = m*(a + A).

Note that A = —a + (a + A), so by a symmetric argument we have that

m*(a+ A) = m*(A).

Exercise 4. If A c R and if A > 0, then \A is defined to be the set
M = {\x | z € A}.
Show that m*(AA) = Am™*(A).

Here is a more challenging version of the previous exercise (since we
haven’t defined outer measure in R").

Exercise 5. If A < R" and if M is an n x n matriz, then M A is defined
to be the set
MA ={Mz | xz e A}.

What is m*(MA)?
Here is some food for thought, which we will revisit later in the course.
Exercise 6. If A, B c R, then
A+B={a+b|lacAbe B}
What can we say about m*(A + B) in terms of m*(A) and m*(B)? Are
there sets with m*(A) = m*(B) =0 but m*(A+ B) # 07

15



2.1.2 Countable sub-additivity

We now establish one of the most important properties of length, which is
that it is countably sub-additive.

Definition 8. An measure is said to be countably sub-additive if

m* (U Ek) < ). m* (Ey)
=1 =1

for any countable collection of sets Ey (disjoint or otherwise).

If one of the Ej ’s has infinite outer measure, the right hand side is
infinite, and there is nothing to prove. We therefore suppose each of the Ej,
’s has finite outer measure. Let € > 0. For each natural number k, there is
a countable collection {I};};°, of open, bounded intervals for which

o0 o
E), c U Ik,i and Z K(I]m) <m* (Ek) + G/Qk.
=1 =1

Now, {I};i}1<ik<w is a countable collection of open, bounded invervals
that cover U,Ogozl Ej.. Thus we have that

e (G Ek> < Y -y [im,n]

1<k, i<o0 k=1

Note that all of the terms are positive, so we can rearrange terms in the
final equality. Since € was arbitrary, we obtain the desired inequality.

Note also that if {E}}}_; is a finite collection of sets, we can prove finite
sub-additivity by taking Ep = J for k > n.

2.2 The need for o-algebras

The outer measure gives our first definition of length for arbitrary sets, and
we have seen that it does a pretty good job. However, it has one major

16



drawback, which is that it fails to be countably additive, or even finitely
additive.
In other words, it is possible to find two sets A and B which are disjoint
and satisfy
m*(A v B) <m*(A) + m*(B).

It is not really possible to construct these sets by hand. In particular, it
requires the Axiom of Choice. However, the fact that the counterexamples
are so pathological suggests that to fix this problem, all we need to do is
restrict our attention to sets which are somehow reasonable, which leads
directly into the notion of measurability and o-algebras.

Definition 9. Let A be a set of reals. A is measurable if m*(X) = m*(An
X) 4+ m*(A°n X) for every X < R.

Here, we use the notation X¢ = R — X whenever X < R..
Remark: A is measurable if and only if m*(X) = m*(AnX)+m*(A°nX)
for every X < R.

Example. We can immediately find some examples of measurable sets.

1. If m*(A) =0, then A is measurable. To see this, suppose m*(A) = 0.
Since m* is monotonic, m*(A n X) = m*(A n X¢) = 0 for every
X cR.

As a result, &, and every singleton are measurable.

2. Since (A°)¢ = A, for any set A which is measurable, its complement
A€ must also be measurable. Thus, R (the complement of the empty
set) is measurable.

After looking at the definition of measurable sets, we see that there is
an algebraic structure to measurable sets, which we can make precise with
the notion of a o-algebra.

Definition 10. Suppose S < P(R). S is a o-algebra over R if it meets the
following criteria.

1. ReS.
2. For every X € S, X¢e€ S. (Closure under complements)

3. For every sequence of sets {An}n_y so that A, € S for every n € N,
Uf:o Ay, €S8. (Closure under countable unions)

17



Suppose S is a o-algebra over R.

1. If XY eS8, then X UY €. Proof: Set Xg=X, X;: =Y, X, =
when n > 1. Then, X Y = ", X,.

2. If X,, € S for each n € N, then (), X, € S.

Proof: DeMorgan’s laws.

Example. There are a few simple examples of o-algebras that we can write
down immediately.

1. P(R) is a o-algebra over R.
2. {J,R} is a o-algebra over R.

Our next goal now is to show that the set of measurable subsets of R is
a o-algebra. To do so, we will need several lemmas.

Lemma 1. Suppose E1, ..., E,, are measurable subsets of R. Then, U;n:l En,
1s measurable.

Proof. We will use induction (on m). The base case, where m = 1 is trivial,
so the hard work will be the inductive step.

Suppose U?le E; is a measurable set. Let I} = U;n;ll Ej. Let Fy = E,.
We must show that F; u F5 is measurable. Let X € R. We need to show

m*(X) =m*(X n (FL U FR)) + m*(X n (F| U F»)°).

What follows is a sequence of calculations by intersecting various different
sets to get the desired equality.
Claim 1: m*(X) = m*(X nF1) +m*(X n F{ n Fy) + m*(X n (Fy U Fy)°).

Since F} is measurable, we have that
m*(X) =m*(X n F1) + m*(X n FY).
Since F3 is measurable,

m*(X nFY) = m*(X nF{nF)+m*(X n Ff nFy)
= m*(X nF{nF)+m"(X n (F v F)°).

So:

m*(X) =m*(X n F1) + m*(X n Ff n F2) + m*(X n (Fy U F.)9)).

18



Claim 2: m*(X n F1) + m*(X n F{ n Fy) = m*(X n (F1 U Fy)).

Since F} is measurable,

m*((X n F1) u (X n (Ff N Fy))) m* (X n F1) u X n (Ff N Fy)) n Fy)

+m*(((X n F1) u (X n (Ff n F2))) n FY)

= m*(X nF)+m"(X n (Ff n F)).
But m*(X n F1 v X nFf n Fy) =m*(X n (F1 v F)).

Therefore, m*(X) = m*(X n (F1 U Fy)) + m*(X n (F1 U F»)°). O
This lemma has the following important corollary.
Corollary 1. If X, Y € R are measurable, then so are X n'Y and X — Y.

The proof of this follows by applying De Morgan’s laws, so I'll leave it
as a small exercise.

Using the same technique as the previous lemma, it is also possible to
prove the following lemma. Since the idea is exactly the same, we will not
write down the proof.

Lemma 2. Suppose A, E1,...,E, < R. Suppose that E1, ..., E, are mea-
surable and that (E1, ..., Ey) is pairwise disjoint. Then,

m*(An U E;) = Z m*(An Ej).
j=1 j=1

We will now prove another helpful lemma towards the goal of showing
that measurable sets form a o-algebra.

Lemma 3. Suppose S < P(R). Then, S is a o-algebra over R if and only
if it meets the following three criteria.

1. ReS.
2. X —Y €S whenever X,Y € S.

3. g An € S whenever {A,}2_, is a pairwise disjoint sequence of sets
inS.

19



Proof. If § is a g-algebra, then by definition and the previous corollary, S
satisfies these three criteria.

Conversely, suppose S satisfies these three criteria. Then, R € S, and
implies closure under complementation. It only remains to show that &
is closed under countable unions.

Claim 1: X uY €S whenever X, Y € S.

To show this, suppose X, Y €S. Set Xg=X, X;=Y—-X,and X,, = &
when n > 1. It follows from that @ e S and Y — X € §. By construc-
tion, {X,,} , is a pairwise disjoint sequence. So, by Un_o Xn € S. But,
XouY =Ur X,

Claim 2: S is closed under countable unions.

Let {Ay}_, be a sequence of sets in S. For each n € N, let
w=A.— ] 4;
j<n

By Claim 1, Uj<nAj € S for each n. By , B, € S for each n € N.
By construction, {By}_, is pairwise disjoint. Thus, by , Un—o Bn € S.
However, | J"_ A, = U2y By

Thus, S is a o-algebra. O

With this lemma in hand, we can finally show that the Lebesgue mea-
surable sets form a o-algebra.

Theorem 4. The set of all measurable subsets of R is a o-algebra over R.

Proof. We apply Lemma 3] We have already observed that R is measurable
and that the set of measurable sets is closed under set differences.

What remains to show is that the set of measurable sets is closed under
countable disjoint unions. Suppose {E,}_, is a pairwise disjoint sequence
of measurable subsets of R. Set E = | J,~_, E,. We need to show that E is
measurable, i.e., for X € R, we have that

m*(X) =m*(X n E) +m*(X n E°).

Claim 1: m*(X)n = Y ym*(X n E,) + m*(X n E°).

n=0
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Let m € N. By Lemmal [l | ", E,, is measurable. So,

m*(X) =m*(X n U E,) +m*(X n (U En> ).

n=0 n=0
By Lemma [2]
m m
U Z *(X 0 Ey)
=0 n=0
At the same time, (| J,"_, E ) o F
m
<U ) > m*(X n E°).
Thus,

m
m*(X) = Z m*(X n E,) + m*(X n E°)
n=0
for every m € N. Thus, Claim 1 holds.

Claim 2: m*(X) = m*(X n E) + m*(X n E°).
By Claim 1,
Q0
Z *(X n Ep) +m*(X n E°).

Since outer measure is countably subadditive,

oe]

> m*(X n Ey) UXmE

n=0
This establishes Claim 2.
Thus, m*(X) = m*(X n E) + m*(X n E°). O

Example. We are able to use this idea to find many new examples of mea-
surable sets.

1. Every countable set of reals is measurable.
2. The set of irrational numbers is measurable.

3. If A, is a measurable set of reals for each n € N, then (\i—, An is
measurable.
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2.2.1 Borel sets

We now define a class of sets called Borel sets which are “always measurable”
(for any reasonable measure). It is worth noting that there are measurable
setd?] which are not Borel. However, Borel sets are those which must be
measurable whenever open intervals are measurable.

Lebesque
W\eaﬁmmble
sets

HIC SVNT
DRACONES

( here be ngons)

Definition 11. Suppose X < R. X is Borel if it belongs to every o-algebra
over R that contains all the open subsets of R.

Remarks:
1. Every open set is Borel.
2. If X is a Borel set of reals, then X°¢ is Borel.

3. If X,, is a Borel set of reals for each each n € N, then Ufzo X, and
7010:0 X, are Borel.

Examples:

2Here, we mean measurable with respect to the Lebesgue measure.
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1. If z € R, then {z} is Borel. Proof: {z} = ((—0,z) u (z,0))".

2. Every countable set of reals is Borel.

3. The set of rational numbers is Borel, and the set of irrational numbers
is Borel.

4. (a,b] is Borel if a,b are real numbers such that a < b.

Intuitively, the Borel sets are those which you can obtain by taking
countable unions, intersections and complements of open sets, all of which
preserve measurability. It is possible to explore the structure of these sets in
a much deeper way. In particular, it turns out there is a hierarchy of Borel
sets depending on how complicated they are (See Chapter 22 of [Kec12|] for
a background on this). However, we will not need to discuss this topic in
this class.

We now show that Borel sets are always measurable. This fact should
not be surprising. However, there is still some work to do for this since we
haven’t yet shown that open intervals are measurable.

Theorem 5. Fvery Borel set of reals is measurable.

To prove this, we only must show that every open set is measurable. In
fact, we need only show that if a < b, the open interval (a, b) is measurable
(since every open set is the countable union of disjoint intervals). Going
further, it suffices to show that if a € R, that the two sets

(—o0,a) and (a,0)
are measurable (Exercise: why?), so that’s what we are going to do.

Lemma 4. Ifa € R, the set (—o0,a) is measurable.

Proof. Suppose a € R and X € R. We need to show that
m*(X) = m*(X n (—w,a)) + m*(X n [a,0)).
Note that
m*(X n[a,0)) < m*(X n (a,0)) + m*(X n{a}),
by sub-additivity but the latter term is zero, and thus

m*(X n [a,0)) = m*(X n (a,0)).
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Now we show that

m*(X) = m*(X n (—0,a)) +m*(X n (a,0))

"

X1 X2
Since outer measure is monotonic, we can assume that both X; and Xy

are non-empty (or else our job is already done). Now we take r > m*(X).
Then there is a non-empty set U < R such that X < U and r > ¢(U). Let

Uy =Un (—w,a) and Uy = U n (a, o).

Then U; and Us are both non-empty and ¢(U) = £(Uy) + £(Us). (For the
latter claim, see the solution to problem 6 on homework 1).
But ¢(Uy) = m* (X n(—0,a)), by definition and ¢(Usz) = m*(X n(a,)),
sor=zm*(X n(—w,a)) + m*(X n (a,o)) for all r > m*(X).
Thus,
m*(X) = m*(X n (—=o0,a)) + m*(X n (a,o0)).

2.3 Approximating Measurable Sets

We now turn our attention to approximating measurable sets. These approx-
imations will be essential when we start using measure theory to compute
integrals. To do so, we define the notions of G5 and F,, sets, which are used
as outer and inner approximations of measurable sets, respectively.

Definition 12. Let X < R.
1. X is Gy if it is the intersection of a countable family of open sets.
2. X is F, if it is the union of a countable family of closed sets.
Remarks:
1. If X € R, then X is Gy if and only if X¢ is Fj.

2. If X is a G set of reals, then there is an increasing sequence of open
sets of reals {U,}°_, so that X = ﬂf;o U,. If X is an F, set of reals,
then there is a decreasing sequence of closed sets of reals {Cy}"_ so
that X = (J'_, Ch.

Before discussing these sets in detail, let’s see a few examples
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Example. 1. The set of rational numbers is an F, set. Namely,

Q= J{g}

qeQ

2. Therefore the set of irrational numbers is a G set.

3. If a,b are real numbers so that a < b, then (a,b| is a Gs set. Proof:

(a.b] = [)(a.b+27").

neN

4. Every open interval is both Gs and F,. Proof: every open set is Gg.
If I is an open interval, then

1= {J [ab].
a,beInQ

However, not every set will be Gg. For instance, Q is not Gs.

Proof. Suppose that it were. In other words, suppose Q = ﬂf:o U,, where
Uy, is an open set of reals for each n € N. Let {g,}°_, be an enumeration
of the rational numbers. Thus, U,, — {¢,} is open and dense for each n € N.
So, by the Baire Category Theorem (\_,(U, — {gn}) is dense. But, this
intersection is empty- a contradiction. O

In order to use G5 and Fj, sets to approximate measurable sets, we must
first establish the following excision property.

Lemma 5. If X is a measurable set of reals that has finite outer measure,
and if Y is a set of reals that includes X, then

m*(Y — X) =m*(Y) — m*(X).

Proof. Suppose X is a measurable set of reals and m*(X) < oo. Suppose
R 2Y 2 X. Since X is measurable,

m*(Y)=m*(Y n X) +m*(Y n X =m*(X) +m*(Y — X).
Thus, since m*(X) < w0, m*(Y) —m*(X) = m*(Y — X). O

Using this lemma, we are finally able to prove the simple fact that the
outer measure of an open set is its length.
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Lemma 6. If U is a non-empty open set of reals, then m*(U) = ¢(U).

Proof. Suppose U is a non-empty open set of reals.
Let
S={(V) : Ro2V 22U |V # (Jis open}.

Thus, m*(U) = inf(S). Since £L(U) € S, m*(U) < £(U). If V is a non-empty
open set of reals that includes U, then ¢(V') = ¢(U) (See solution to problem
6 homework 1). Thus, m*(U) = ¢(U). O

We can now describe the relationship between measurable sets and their
approximations.

Theorem 6. Let X < R. Then, the following are equivalent.
1. X is measurable.

2. For every € > 0, there is an open U S R so that X € U and m* = (U —
X) <e.

3. There is a G5 set of reals V so that V 2 X and so that m*(V—-X) = 0.

4. For every € > 0, there is a closed C € R so that X 2 C and so that
m*(X —C) <e.

5. There is an F, set of reals V' so that V < X and m*(X — V) =0.
Proving this is somewhat tedious, but it’s not too hard.

Proof. Proof:
= : Suppose X is measurable. Let € > 0.

Case 1: m*(X) < oo.

By the definition of outer measure, there is a non-empty open set of
reals U so that /(U) < m*(X) + € and so that U 2 X. Since m*(X) < oo,
((U) —m*(X) < e. By Lemmal6, ¢(U) = m*(U). Since X is measurable,
by Lemma [f], m*(U — X) = m*(U) — m*(X). So, m*(U — X) <.

Case 2: m*(X) = .

For each n € N, let X;, = X n (—n,n). Thus, X = J,, X,,. For each

n € N, m*(X,) < m*((—n,n)) < o since outer measure is monotonic.
By Case 1, for each n € N there is an open set of reals U, 2 X, so that
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m*(U, — X,,) < 2D, Set U = | J,, Up. Then, U — X < |J,,(Un — X5).
So,

o0
m*(U = X) <m*(| U, — Xp) < D] 270 = e
n n=0
= : Suppose . Then, for each n € N, there is an open set of

reals U, so that U, 2 X and so that m*(U,, — X) <27". Set V =, Uy.
So, for each n € N,

m*(V—-X)<m*(U, - X) <27
Thus, m*(V — X) = 0.
= (1): Suppose there is a G set V so that V 2 X and m*(V - X) =
0. Thus, V is Borel and so V' is measurable. Since m*(V —X) =0,V — X
is measurable. Since (V — X)¢* =V U X, X =V n (V — X)¢ Thus, X is
measurable.

The remaining implications are now proved by taking complements. [

We can now show that measurable sets are open intervals, modulo a set
of small measure.

Theorem 7. Suppose X is a measurable set of reals whose outer measure
s finite. Then, for every € > 0, there are open intervals Iy,...,I; so that
m* (XA U]:L:O I,) < e and so that (I, ..., Ix) is pairwise disjoint.

Proof. Let € > 0. By Theorem [6] there is an open set of reals U so that
U 2 X and so that m*(U — X) < €/2. There is a countable and pairwise
disjoint family of open intervals {I;};er so that U = UjeF I;.

Claim 1: /(U) < o0.

Proof Claim 1: Since m*(U) < m*(U — X)+m*(X) < ¢/24+m*(X) and
m*(X) < o0, m*(U) < 0. By Lemma [6 m*(U) = ¢(U).

Claim 2: There is a finite Iy € F so that >}, p m*(1;) < €/2.

Proof of Claim 2: Since Y ._p¢(I;) = {(U) < .

jeF

Claim 3: m*(XAUjep, ) <e.
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Proof of Claim 3: By monotonicity of outer measure and Claim 2:

m*(|J L -X) < m*(U—-X)<e2
jeF

m* (X - L) < m*U-|]L)<e?2

JEF1 JEF

By the countable subadditivity of m*

m* (XA U I;) <e.
JEFI

2.3.0.1 The Vitali covering lemma

Before defining the Lebesgue measure, let us also provide the Vitali covering
lemma, which will be quite useful later in the course.

Definition 13. An interval is degenerate if it consists of a single point.

Definition 14. Suppose E < R. Suppose F is a set of intervals that are
closed, bounded, and non-degenerate. F is a Vitali covering of E if for every
x € E and every € > 0 there is an interval I € F so that x € I and ¢(I) < e.

Here are some examples and non-examples of Vitali coverings.
—1,2]} is a covering of [0, 1] but not a Vitali covering.

{l
2. {[r—2""z+2"] : xz€[0,1] and n € N} is a Vitali covering of
[0

Lemma 7 (Vitali Covering Lemma). Suppose E is a set of reals and m*(E) <
00. Suppose F is a Vitali covering of E. Then, for every e > 0, there exist
Iy,..., I, € F so that (Iy,...,I,) is pairwise disjoint and so that

n
m*(E — U I;) <e.
k=0

Proof. Case 1: There exist I,...,I, € F so that £ < U?:O I; and so that
(lo, ..., Iy) is pairwise disjoint.

In this case, there is nothing to prove and we are done.
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Case 2: There do not exist Iy,...,I, € F so that E U?:o I; and so
that (lo, ..., I,) is pairwise disjoint.

By the definition of outer measure, there is an open set U 2 E so that
U)<oo. Let F/={IeF : IcU}.

Claim 1: F’ is a Vitali covering of FE.
Proof: Exercise.

Claim 2: If Iy,..., I, € F', and if (Iy,...,I,) is pairwise disjoint, then
there exists I € F' so that I n | Ji_,; = &.

Proof: Exercise.

We inductively define a sequence of intervals in F’ as follows. Let Iy be
any interval in F’. Assume Iy,..., I, have been defined. Let

Fo={eF : In|JL=a}
=0

By Claim 2, F,, is nonempty. Let s, = sup{{(I) : I € F,}. Since I € U
for each I € F'| s, < 0. So, there exists I € F, such that £(I) > s,,/2; let
I,,+1 denote such an interval.

Note that {I,,};"_, is pairwise disjoint.

Claim 3: >, °_ ¢(I,) < 0.

Proof Claim 3: (U, yIn) < w(U) < . By countable additivity,
M(Ufzo In) = Zfzo ((In).

Thus, lim,, .« ¢(I,,) = 0.

For each n € N, let ¢, = center of I, and let r, = radius I,. i.e.
I, = [cn — T, cn + 1rn]. Let Jp = [¢n — b1y, ¢ + 51y ). Thus, £(J,) = 50(1,,).

Claim 4: For every ne N, E —p_o I © Ui_ i1 i

Proof Claim 4: Let © € E — (J;_qIz. There is a 6 > 0 so that
(x—0,2+8)NUp_olx = &. Thereisan I € F' sothat z € I < (x—§,z+9).
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Thus, I € F,.
Subclaim 4.1: There exists ng so that I n I,,, # .

Proof of Subclaim 4.1: Suppose not. Then, I € Fy, for all ng. Thus,
0(Ip41) > £(1)/2 > 0 for all n. Thus, lim,_,o ¢(I,) # 0- a contradiction.

Choose the least such ng. Therefore, ng > n. Also, I € Fp,—1, so
UTny) > €(1)/2.

Subclaim 4.2: z € J,,.

Proof of Subclaim 4.2: By Subclaim 4.1, there is a point xg € I n I,,.
Then,
|z — xo| <L) < 20(1y,)

and thus
0 — Ty < U(In,)/2.

So, |x — xpy| < 4rp, + Ty = By, which implies z € J,,.
This proves Claim 4.

Now, let € > 0. There exists n so that

0

D1 UI) < ef5.

k=n+1

Since u(J) = 5u(Ix), we find that

So, by Claim 4,
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2.4 The Lebesgue Measure

With all these preliminaries taken care of, we are finally able to define the
notion of the Lebesgue measure.

Definition 15. If E is a measurable set of reals, then the outer measure of
E is also called the measure of E and is denoted u(E).

From our previous examples, there are a few sets which we can immedi-
ately measure.

Example. 1. The Lebesgue measure of an interval is its length.

2. 1(Q) = 0.

Before moving on to proving some properties of the Lebesgue measure,
let’s solve a problem from a past qualifying exam.

Exercise 7 (2000 Qual Problem 1). 1. Define the measure . on the Borel-
o-algebra of R by u(A) = A(A n (0,1)) for Borel sets A. (A = Lebesgue
measure) Let

K = ﬂ{A : A is a closed set such that u(A) = 1}

and
D = ﬂ{G : G is an open set such that u(G) = 1}

Determine precisely which points belong to K and D and prove your claim.

2.4.1 Countable Additivity

The Lebesgue measure has the advantage of being countable additive, which
was the entire reason that we needed to discuss measurable sets.

Theorem 8 (Countable Additivity). : If {En} is a pairwise disjoint
sequence of measurable sets of reals, then p({in_g En) = o i(En)-

Proof. Suppose {E,}_, is a pairwise disjoint sequence of measurable sets
of reals.

Claim 1: pu(Up_o En) < Zp_o #(En).

This holds since outer measure is countably subadditive.
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Claim 2: For each m € N, u(Ui_o En) = Yoe o i(En).

To establish this, we use the finite additivity. Let m € N. Set A =
Uiy En. By Lemma

(A n U E,) = Z w(An Ey).
n=0 n=0

But, AnU,_En = Up—o En and A n E, = E,. Since outer measure is
monotonic,

Claim 3: u(Up_o En) = 20lo 1(En).

To see this, apply Claim 2 and take limits.

As a corollary, we immediately obtain finite additivity as well.

Corollary 2. IfEy,..., E,, are measurable sets of reals, and if (Ey, ..., Ey)
is pairwise disjoint, then p((U,—o En) = D oneo 1(En).

We also obtain the measure of the difference of sets is the difference of
measures.

Corollary 3. Suppose X,Y are measurable sets of reals so thatY 2 X and
so that u(X) < 0. Then, p(Y — X) = pu(Y) — p(X).

Proof. By Corollary [2, u(Y) = u(Y — X) + u(X). Since u(X) < o0, u(Y) —
p(X) = uY — X). s

2.4.2 Continuity of measure

The Lebesgue measure has another desirable property, which is that it is
continuous with respect to increasing and decreasing sequences of sets.

Theorem 9 (Continuity of measure). Suppose {E,}°_, is a sequence of
measurable sets of reals.

1. If B, € Enqq for allne N, then pu(Ui_g En) = limy o En.
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2. If E, 2 Epyq for alln € N, and if u(Ep) < o0, then p((o_g En) =
limy, o0 p(Epy).

Proof. : Suppose E,, € E, 1 for all n € N.

Case 1: u(E,,) = o for some m.

By monotonicity of outer measure, u(|Ji_, E,) = 0. By monotonicity
of outer measure, pu(E,) = o for all n > m. Thus, lim, o p(E,) = 0.

Case 2: u(Ey,,) < o for all m.

We have | ;o En = Eo U o 1t(En+1 — Ey). By Theorem

o0
EO v U Eny1 — + Z M Eni1 — )

n=0

By Corollary [3| p(En+1 — En) = p(Ent1) — p(Ey) for all n. Thus,

o8] o]
Zou( il — Z Epi1) = u(En) = lim p(E,) — p(Eo).

Thus, u(Ui_q En) = limy o p(Ep).
([2): Suppose E,, 2 Ey41 for all n € N and pu(Ep) < o0. Thus, u(E,) < o

for all n € N and u(ﬂfzo E,) <. Also, Ey—E, € Ey—FEp4+1 foralln e N.
Then, using the previous argument ( Part ,

w(|J Bo— En) = lim u(Ey — Ey,).

n—0o0

However, Uf:o Fy—FE, =FEy— ﬂfzo E,. By Corollary

— ) Bn) = u(Eo) = () En) and p(Eo — Ey) = p(Eo) — p(En).-
n=0

n=0

As a result, we find that

u([) En) = lim p(Ey).

n—o
n=0
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2.4.3 Everywhere and Almost Everywhere

Measure theory is a powerful tool for measuring the size of sets. However,
as we have seen it is possible for a non-empty set to have non-zero measure
and the Lebesgue measure is unable to distinguish these sets from the empty
set. As such, for the rest of the course, we will often talk about properties
that hold almost everywhere, as opposed to those that hold everywhere.

Definition 16. We say that a property holds almost everywhere in a set £
if the set of all x € E so that the property fails has measure 0. The set of
all x where the property fails is called an exceptional set.

Example. Almost all real numbers are irrational.
The following lemma is extremely important.

Lemma 8 (Borel-Cantelli). Suppose {A,}y_q is a sequence of measurable
sets of reals so that Y, u(A,) < . Then, almost every real number
belongs to only finitely many A, ’s. i.e. the measure of

{xeR : xe A, for infinitely many n}
18 zero.

Proof. Let
E={zxeR : xe A, for infinitely many n}.

We need to show that pu(F) = 0. Note that = € E if and only if for every
n € N there exists m > n so that x € 4,,. So:

o0 o0
E:OOL:JAm

Note that (,,,_, Am 2 Upens1 Am- Since 307 o u(Ayn) < o0, p(Un_o An) <
0. So by Theorem

p(E) = lim u( () Am)-

However,

M( U Am) < Z M(Am)'

m=n

Since >0 _o i(Am) < 0,

Thus, u(E) = 0. O
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2.5 Non-Measurable Sets

Most sets that we encounter “in the wild” are Borel sets, and thus measur-
able. However, there is certainly some sampling bias going on here, because
in some sense, “most” sets are non-measurabld’|

Constructing non-measurable sets requires some work, so we take a brief
moment to review equivalence relations. Let us first introduce some nota-
tion.

Definition 17. Suppose X is a set, and suppose ~ is an equivalence relation
on X.

1. For each c € X, let [c]~ = the ~-equivalence class of c.

2. X/ ~ denotes the set of all ~-equivalence classes.

Definition 18. Suppose X is a set, and suppose ~ is an equivalence relation
on X. A system of representatives for ~ is a set R € X so that each ~-
equivalence class contains exactly one element of R.

Example. Let n be a positive integer. Let ~ denote the equivalence modulo
n relation on Z. Then {0,...,n — 1} is a system of representatives for ~.
{1,...,n} is also a system of representatives for ~.

The relationship between equivalence classes and system of representa-
tives quickly leads down the rabbit hole of foundational issues.

Question 1. Does every equivalence relation have a system of representa-
tives?

Definition 19 (Axiom of Choice). If X is a nonempty set, then there is a
function F : P(X) — X so that F(Y) €Y for each’Y € P(X).

With this axiom, we can find a system of representatives for any equiv-
alent relation.

Corollary 4. Assuming the Axziom of Choice, every equivalence relation has
a system of representatives.

Proof. Suppose X is a set and ~ is an equivalence relation on X. If X = ¢,
then ¢ is a set of representatives for ~. Let F': P(X) — X be a function
so that FI(Y) € Y for each Y € P(X). Let R = F[X/ ~]. We claim that

3At least if we assume the axiom of choice.
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R is a system of representatives for ~. For, let a be a ~-equivalence class.
Then, F'(a) € a. Suppose ¢ € R and ¢ # F'(a). There exists b € F'// ~ so
that F'(b) = ¢. Thus, b # a. Therefore, b na = . Since c€ b, ¢ ¢ a. So,
a contains exactly one element of R. 0

The reason to consider equivalence relationships and systems of repre-
sentatives is that it allows us to construct non-measurable sets.

Definition 20. When z,y € R, write x ~q y if y —x € Q.
Note that ~q is an equivalence relation on R.

Proposition 10. Suppose R is a system of representatives for ~q. Then,
g+ Rnq + R=J whenever q,q are rational numbers so that q # ¢'.

Proof. Suppose q,q¢' € Q and that g + R n ¢ + R # . Then, there exist
¢,d € Rsothat g+ c¢=¢ + . Thus, ¢ — ¢ = ¢ — c. Thus, ¢ ~g ¢. Since
R is a system of representatives for ~q, ¢ = ¢/. Thus, ¢ = ¢ ]

Theorem 11. Every system of representatives for ~g is non-measurable.

Proof. Let R be a set of representatives for ~g. By way of contradiction,
suppose R is measurable. Let S,, = R [—n,n]. Then, S,, is measurable for
each n € N. Also,

o0] o0] o0
R=[Jrx+r=JJr+5=1J U Ur+s.
m]n=0

AeQ AeQ n=0 m=0XeQn[—-m,m

We start by showing that if S,, was measurable, then p(S,) = 0 for every
neN.

Proof of Claim: Let n € N. Then, (Jyegn(_1,1] A+ 50 € [-(n+1),n+1].
So,
p( ) A+Sec-(n+1)mn+1]) <o
AeQn[-1,1]

Thus, by Proposition

Z p(A+Sp) <
AeQn[-1,1]

Since outer measure is translation-invariant:

D1 u(Sn) =0

AeQn[—1,1]
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Therefore, u(Sy) = 0.

From this, we see that u(R) = 0, which is a contradiction. O

As aresult, if we assume the axiom of choice, we find that non-measurable
sets exist.

Corollary 5. There is a non-measurable set of reals.

Proof. By Corollary EL there is a system of representatives for ~g. By
Theorem [T} such a system is non-measurable. O

Using this, we can finally go back to show why the outer measure fails
finite additivity

Corollary 6. There exist A,B < R so that An B = and m*(Au B) <
m*(A) + m*(B).

Proof. Let E be a non-measurable set of reals. Then, there is a set of reals
X so that m*(X) <m*(E n X) + m*(E° n X). O

Proposition 12 (Vitali). Every set with positive outer measure includes a
non-measurable set.

Proof. Exercise. O

2.5.0.1 Some remarks on non-measurable sets

The existence of measurable sets is an extremely thorny issue which is deeply
tied to foundational issues. In fact, Robert Solovay constructed a model (in
the sense of mathematical logic) of the real numbers where all subsets are
Lebesgue measurable [Sol70]. For this, he used the Zermelo Frenkel axioms
with an extra axiom on existence of an inaccessible cardinal. The technical
details are outside the scope of this course, but heuristically what this shows
is that the existence of non-measurable sets is very nearly equivalent to the
axiom of choice.

Historically, this phenomena, along with a higher-dimensional version
called the Banach-Tarski paradoxE| lead many mathematicians to reject the
axiom of choice altogether.

4The Banach-Tarski paradox decomposes a solid ball into 5 pieces and then rotates
and translates the pieces into two solid balls of the same radius. This construction heavily
relies on the axiom of choice and non-measurable sets.
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For modern functional analysis, trying to avoid the axiom of choice or
the Banach-Tarski paradox is extremely restrictive, because you have to dis-
card the Hahn-Banach theorem [FW91], which is one of the most important
results in partial differential equations.

My advice is to not worry too much about the axiom of choice unless
you are interested in mathematical logic. In my experience, non-measurable
sets and other foundational matters don’t show up unless you go looking
for them, so it is perfectly possible (and acceptable) for a mathematician to
consider such issues only in a superficial way.

2.6 The Cantor Set

We have seen that all countable sets have zero measure and that all Borel
sets are measurable. It is natural to ask whether the converse of these results
hold. In both cases, the answer is no, and we can see this by studying the
Cantor set.

There are several ways to define this set, so we will provide two.

Definition 21 (Cantor set - ternary expansion definition). The Cantor mid-
dle third set consists of all numbers in [0, 1] that have a ternary expansion
consisting of 0’s and 2’s. That is, x belongs to the Cantor middle third
set if and only if there is a sequence {an}*_, so that & = > =%

n=0 3n+1 and
an € {0,2} for alln € N. We denote this set by C.

Definition 22 (Cantor set - intersection definition). Consider the closed
interval I = [0,1] and remove the open set (3,3). Set

12 1 2
=J—(=.2)= - =, 11.
=i (55) = [os] o 5]
Repeat the process of removing the middle third from each set to obtain
12 7 8 1 21 27 8
=C1— | (5= — =) = — — = - = - 1].
Gi=C <(9’9)u(9’9)> [0’9]U{9’3}U[3’9]U[9’]

C, is the disjoint union of 2™ closed intervals of length 37™. We then
define the Cantor set to be
0
C=()Chn
n=1

Exercise 8. Show that these two definitions of the Cantor set agree.
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Figure 2.1: The Cantor Set

Exercise 9. Show that i is in the Cantor set.
Proposition 13. C is a closed set whose measure is zero.

Proof. C is closed since it is the intersection of closed sets. It has measure
zero since C  C,, for all n and thus

Exercise 10. Show that C is uncountable.

Hint: Use the ternary definition and consider the map sending a num-

ber z written in ternary as .ajasas ... to the number written in binary as
al a2 as

5 9 9 -

Exercise 11. Use the Cantor set to construct a dense uncountable set of
real numbers with measure zero.
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2.6.1 Counting subsets

The Cantor set gives an example of an uncountable set with measure zero.
However, we can also use it to “construct” a Lebesgue measurable set which
is not Borel.

Proposition 14. Any subset of the Cantor set is measurable.

Proof. By the monotonicity of the Lebesgue measure, any subset of the
Cantor set has measure zero. O

To see that this implies that there are Lebesgue measurable sets which
are not Borel, we can count the number of subsets of the Cantor sets, of
which there are

#(P(C)) = #(P(R)) = 2%

On the other hand, there are #R open subsets of R (exercise: why?)
and every Borel set is constructed from countable intersections and unions
of open sets. Using transfinite induction and these two facts, it is possible
to show that there are #R Borel sets.

We will revisit the Cantor set in the next chapter to provide counterex-
amples for some intuitive ideas about continuous functions, their derivatives
and measures.
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Chapter 3

Measurable Functions

We now turn our attention to measurable functions in order to lay the
foundations for the Lebesgue integral. The basic idea is to define it in a
similar way to continuity, but there are some subtleties.

Definition 23. A function f : X — Y is continuous if the pre-image of
any open set f~1(U) is open.

Definition 24. A function f : E — R (or [—o0,0]) is measurable if the
preimage of any open set f~1(U) is Lebesque-measurable.

By considering f~!(R), we can immediately see that the domain of the
function £ must be measurable. We also see that every continuous real-
valued function on R is measurable.

Proposition 15. Suppose E is a measurable set of reals and f : E —
[—00,00]. Then, the following are equivalent..

1. f is measurable.

oo]] is measurable for every a € R.

a,0]] is measurable for every a € R.

“(a,
“[~00,a)] is measurable for every a € R.
all
[—00,al] is measurable for every a € R.

'

Proof. (Sketch) By definition, |1| implies all the other statements. If any of
- |b| hold, then by considering complements, countable unions, and finite
intersections, it follows that f is measurable. O
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As an immediate consequence, we see the following corollary.

Corollary 7. Suppose f : E — [—0, 0] is measurable. Then the preimage
f~YU) of any Borel set is measurable.

3.0.1 A brief remark on c-algebras

Much in the same way that we can use function(al)s to induce a topology (by
considering the coarsest topology in which a function (or family of functions)
is continuous, we can use functions to construct sigma algebras. This idea
will not be used heavily in this class, but if you are interested in stochastic
calculus or financial math, you will see it there.

Proposition 16. Suppose f : E — R is a measurable function. Let S =
{X SR : f7l[X] is measurable}. Then, S is a o-algebra over R.

Proof. Since f~'[R] = E, and since E is measurable, R € S.

If f~![X] is measurable, then f~1[X¢] = E — f~![X] is measurable.
So, S is closed under complementation. If f~![A,] is measurable for each
n €N, then fHUr_,An] = Ur_, f[An] is measurable. So, S is closed

under countable unions. O

Now back to the regularly scheduled programming. ..

3.1 Sums, products, pointwise limits, etc.
We now show that some natural ways to combine measurable functions

produce more measurable functions.

Theorem 17. If f : E — [—o0, 0] is continuous, and if E is measurable,
then f is measurable.

Proof. Let U < [—o0, 0] be an open set of reals. Since f is continuous,
there is an open set V so that f~![U] = V n E. Since V, E are measurable,
V N E is measurable. O

Lemma 9. Suppose f : E — [—00,o] and g : E — [—0,0] are equal
almost everywhere (i.e. u({t€ E : f(t) # g(t)}. If f is measurable, then g
s measurable.

Proof. Suppose f is measurable. Let £ = {x € E : f(x) # g(z)}. Then, for
every U € [—o0, 0],

g MU= FUIAR-E) U g U] NE.
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Suppose U is open. Then, f~1[U] is measurable. Since & =0, g~ 1[U] n &
is measurable. Thus, g~![U] is measurable. O

Proposition 18. Suppose f : 1y — [—00, 0] is measurable and g : Fy —
[—00,00] is continuous. Suppose Eo is open and Ey 2 ran(f). Then, go f
1s measurable.

Proof. Suppose U € [—, 0] is open. Then, (go f)"'[U] = f~![g ' [U]].
Thus, g~ ![U] is open. Thus, (g o f)~![U] is measurable. O

Theorem 19. Suppose f : E — [—0,0] and g : E — [—0,00] are mea-
surable. Suppose also that f and g are finite almost everywhere. Then, fg
is measurable and af + Bg is measurable for all o, B € R.

Proof. By Lemma [0 we can assume that f and g are real-valued.
Claim 1: f + g is measurable.
Proof Claim 1: Set h = f 4+ g. Let ae R.

We have:

h(z) € (a,0] <= f(z)+g(x)>a
— f(@)>a—g(x)
— JqeQ f(@)>qg>a—yg)
<~ 3J¢eQ f(zr)>q and g(z)>a—q
So,

h (e, )] = | £~ (g, %011 m g (@ — g, 0]].
qeQ

Thus, h~![(a, o0]] is measurable. Thus, by Proposition L5 & is measurable.
Claim 2: af is measurable.

Proof of Claim 2: Set g(x) = ax. Then, af = go f. Apply Proposition
1K

Claim 3: fg measurable.

Proof Claim 3: fg = 3[(f +9)*> — (f —9)*]. By Proposition (f +9)?
and (f — g)? are measurable. O

Definition 25. Suppose f : E — [—o0, 0] and g : E — [—0o0,00]. Then, for
allz € R, max{f, g}(x) = max{f(z),g(x)} and min{f, g}(x) = min{f(z), g(x)}.
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In other words, max{f,g}(x) is simply the larger of f(x) and g(z) and
conversely for min{f, g}(z).

Definition 26. Suppose f : E — [—o0,®]. The positive part of f, denoted
[T is defined as ft = max{f,0}. The negative part of f, denoted f—, is
defined f~ = —min{f, 0}.

Proposition 20. Suppose f : E — [—o0,©] and g : E — [—o0,®]. Sup-
pose f,g are measurable and finite almost everywhere. Then, max{f, g} and
min{f, g} are measurable.

In fact, it is possible to prove this result without assuming that f and g
are finite almost everywhere, but this will not be necessary for our purposes.

Proof. Set h = max{f,g}. Suppose U is an open subset of [—o0,00]. Then,
RU]l = {z€E :f(x)eU and f(z)> g(z)}

U {reFE : g(x)eU and g(z) = f(z)}

FHU A (F =97 0,20 | 97 U]~ (9= £ [[—0, 0]

Since f — g and g — f are measurable, it follows that h~1[U] is measurable
if U is open. Thus, h is measurable.
min{f, g} = —max{—f, —¢g}. Thus, min{f, g} is measurable. O

Corollary 8. If f is measurable, then f* and f~ are measurable.

It is worth noting that these proofs would be easier were we able to
discuss measurability of higher dimensional sets (since max is naturally a
two-variable function). This is one of the downsides of sticking with one
variable, (the upside is that it is much easier to define the Lebesgue measure
on the real line compared to a higher dimensional space).

We now come to one of the most important facts about the measur-
able functions, which is that the pointwise limit of measurable functions is
measurable. Note that the pointwise limit of continuous functions may not
be continuous. It turns out that the pointwise limit of Riemann integrable
functions need not be Riemann integrable either, so this result will be one
of the major advantages of the Lebesgue integral.

Theorem 21. Suppose E is a measurable set of reals and that f, fo, f1,. ..
are extended real-valued functions on E so that fy, f1,... are measurable and
lim,, o fr(z) = f(z) almost everywhere. Then, f is measurable.
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Proof. Let X ={x € E : lim, .o fn(z) # f(x)}. Suppose U < [—00, 0] is
open. Then,
VI =X n 1 UTu X6 A U]

Suppose z ¢ X. Then,

f(x)eU < INgeNVn = Nyfn(x)eU
< ze |J ] £V

No=0n=Ny
So,
0
Xenful=xa | () £H'UL
N()GNn:NO
Thus, f~![U] is measurable. O

Definition 27. Notation: f, — f a.e. is shorthand for { fn}>_, converges to
[ almost everywhere. f, — f is shorthand for {f,}°_, converges pointwise

to f.

Finally, we note that the restriction of a measurable function to a mea-
surable sub-set is measurable.

Definition 28. f|g denotes the restriction of f to E when E < dom(f).
Namely,

fl() = { f(x) ifre B

undefined otherwise

Proposition 22. If f is measurable, and if E is a measurable subset of the
domain of f, then f|g is measurable.

3.2 The Cantor Function and non-measurable func-
tions

In the previous section, we saw multiple ways to combine measurable func-
tions to obtain new measurable functions. However, there was a conspicuous
absence: composition.

Observation 1. The composition of measurable functions is not necessarily
measurable!

To see this, we will revisit the Cantor set and use it define the Cantor-
Lebesgue function.
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Definition 29. Suppose x € C, and let x = Y, gt where ap, € {0,2} for
all n € N. Define

Proposition 23. Suppose ng € N. If xg,x1 € C, and if |zg — 21| < 370,
then |d(zo) — P(x1)| < 270,

To obtain the full Cantor-Lebesgue function, we extend ¢ to [0, 1] as
follows. For each z € [0,1] — C, let

d(x) = ¢p(sup{a’ e C : 2’ < z}).

¢ is called the Cantor-Lebesgue function.
It is possible to calculate some values of this function explicitly.

1. Ifxe (L, 2), then ¢(2) =

B0 N

373
2. If x e (I,5), then ¢(z) =
We will now note some properties of this function

Proposition 24. If (a,b) < [0,1] — C, then ¢ is constant on (a,b) and
¢(a) = o(b).

Corollary 9. ¢ is non-decreasing.
Proposition 25. ¢ is continuous.

Proof. Let € > 0 Choose ng € N so that 270 < e. Suppose zg,z1 € [0,1]
and |zg — x| < 370,

Claim: |¢p(xg) — ¢(z1)| < 27"0.

Proof Claim: WLOG zg < x7. Let:

v, = inf{reC : z9<a}
<

7} sup{z e C : =z
Thus, x(, 2} € C. By Proposition 24} ¢(z() = ¢(x¢) and ¢(z)) = ¢(z1).

Case 1: xf, > z1 or = < xq.
0 1

It follows that (zg,z1) € [0,1] — C. Thus, ¢(xo) = ¢(z1) by Proposition
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Figure 3.1: An approximation of the Cantor-Lebesgue function
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Case 1: z), < x1 and zo < 2.

Thus, z{, 2} € [z, x1]. Therefore, |z, — z}| < 37™. So, by Proposition

|(x0) — P(a)] <27, O

This proposition has the (perhaps surprising) consequence that ¢ is sur-
jective on [0, 1]

Corollary 10. ran(¢) = [0, 1].
Proof. Since ¢(0) = 0 and ¢(1) = 1 and ¢ continuous. O

The Cantor-Lebesgue function is continuous and increasing, but it will
be helpful to modify it so that it is strictly increasing. To do so, we define

P(x) =z + ox).

Observation 2. The functiony is an increasing and continuous map of
[0,1] onto [0,2].

Observation 3. The inverse function ' is continuous.

One somewhat surprising fact is that even though the Cantor set has
zero measure, its image under ¥ has positive measure.

Proposition 26. u(¢[C]) = 1.

Proof. Since 1 is one-to-one, [0,2] = ¢[C]u¢[[0,1]—C]. If (a,b) < [0,1] —
C, then p[¢[(a,b)]] = p((a,b)). Thus, u(y[[0,1] — C]) = 1. Therefore,
u(@[Cl) = 1. O

Proposition 27. There is a measurable A < [0,1] so that ¥[A] is non-
measurable.

Proof. Since ¢[C] has positive measure, it includes a non-measurable set B.
Set A = ¢~![B]. Then, A < C. So, A is measurable. O

Corollary 11. There is a non-measurable function.

Proof. Suppose A is a measurable subset of [0,1] so that ¢[A] is non-
measurable. Let h = y4 o ¢~'. Then, h7'[(3,3)] = [A]. Thus, h is
non-measurable. O
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3.2.1 A remark for those interested in probability

The purpose of this subsection is to make some remarks on the Cantor-
Lebesgue function and its relation to probability. The reader is invited to
skip this section if they would like.

When one learns probability, one encounters many examples of proba-
bility measures (i.e., measures whose total mass is one). These generally fall
into two types.

1. The first type are those which are discrete and have probability mass
functions, such as the binomial distribution or negative binomial dis-
tribution. Such measures are called atomic, since they charge (i.e.,
give positive measure to) points.

2. The second type are measures such as normal distribution, which has
a probability density function

and where the measure of a subset U can be computed as

L f(z) da

(where this integral is done with respect to the Lebesgue measure).

It is tempting to intuitively think of measures as being some sort of lin-
ear combination of a continuous measure and an atomic measure. We will
not cover it in this class, but if you continue learning real analysis you will
encounter the Radon-Nikodym derivative (of which f(x) is an example) and
the Lebesgue decomposition theorem, which support this intuition. Intu-
itively, these results state that any reasonableﬂ measure can be decomposed
into a measure which has a probability density function (with respect to the
Lebesgue measure) and a measure which is singular (i.e., charges null sets).

However, it is important to realize that singular measures need not be
atomic. In particular, the Cantor-Lebesgue function can be understood
as a cumulative distribution function for a probability measure which is
supported on the Cantor set. Although this measure is Lebesgue singular
(since the Cantor set has measure zero), the fact that the Cantor-Lebesgue

IThere is a technical assumption here that the measures be o-finite, which we will see
at the very end of this class.
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function is continuous means that the measure is non-atomic. As such,
this is an important counter-example to keep in mind if you are studying
probability theory.

And now back to our regularly scheduled programming. . .

3.3 Approximating measurable functions

For Riemann integration, the general idea is to use step functions to ap-
proximate the desired function and then compute the area underneath the
step function. For the Lebesgue integral, we will instead approximate us-
ing simple functions. Intuitively, these functions cut horizontally instead of
vertically.

Definition 30. A simple function is a real-valued measurable function whose
range is finite.

Example. 1. The Heaviside function

1 >0
f(x):{o z<0

2. The Dirichlet function

0 z¢Q
Definition 31. Suppose E € R. For each x € R let

f(:z:)z{l reQ

1 ze F
XE(Q”):{ 0 2¢ E

XE s called the characteristic function of F.

If F is measurable, then g is a simple function.

Proof. Suppose U < [—o0, 0] is open.

R 0,1eU
_ E¢ 0eUand 1¢U
1 _
Xe U= 5 0¢vand 1cU
%) 0,1¢U
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It is not hard to show that every step function is also a simple function
Exercise 12. Show that every step function is a simple function.

There is an alternative characterization of simple function and the linear
combination of characteristic functions.

Proposition 28. A function ¢ : R — R is simple if and only if there are
measurable sets E1,...,E, R and cq,...,c, € R so that

n
¢ = Z CjXEj
j=1

Here is a quick sketch of the proof. For the forward direction, suppose
that ¢ simple. Let {c1,...,c¢,} = ran(¢). Take E; = ¢~ 1[{c;}]. For the
reverse direction, note that the range of ¢ is finite. Since x g, is measurable,
by Theorem we find that ¢ is measurable.

Theorem 29 (Simple Approximation Lemma). Suppose f : E — R is a
bounded measurable function. Then, for every € > 0, there exist ¢, 1 so that
¢ and Y are simple functions on E, , ¢ < f <y and ¢ — ¢ <e.

Proof. Since f is bounded, there is a positive number M so that |f(z)| < M
for all x € E. Choose ng € N so that 2M2™"° < e. Let ¢;j = —M +
J2M)27™0 and let dj = —M + (j + 1)(2M)27™. Set V; = [¢j,d;) when
0 <j<2m. Thus, [-M,M) = J;-on Vj. Note ran(f) < [-M,M). Set
E; = f71[V;]. Therefore, E; is measurable. Set:

$1 = D cixg
j<2mo

1= ) dixg,
j<2mo

By Proposition ¢1 and 1y are simple. Let ¢ = ¢1|p, and let ¥ = ¢1|p.
Thus, ¢ and ¥ are simple and ¢ < f < ¢ by construction. Let z € E. Then,
x € Ej for exactly one j. By construction, ¢; = ¢(z) and d; = ¢(z). But,
dj—Cj =2M27™0 < ¢, OJ

In fact, we can prove a stronger approximation theorem as well.

Theorem 30. Suppose f : E — [—o0, 0] and suppose E is measurable.
Then, f is measurable. if and only if there is a sequence of simple functions
on E {op}_ so that oy, — f a.e. and |oy| < |f| for all n. If f >0, then
we can choose {0y} to be non-decreasing.
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Figure 3.2: The simple functions are converging almost everywhere to the
function f : E — R (depicted in purple). As a disclaimer, these are not the
precise functions that are constructed in the proofs of the simple approxi-
mation lemmas.

Proof. The reverse direction follows directly from Theorem so it remains
to show the forward direction.
Case 1: f = 0.

Set E,, = f71[[0,n + 1)] for every n € N. Set f, = f - xg,. Thus, f, is
measurable and bounded. By Theorem 29} there is a simple function ¢, so
that ¢, < f,, and f,, — ¢, < 27", Let

[ ot(x) zeE,
Tn(w)_{ n+l z¢FE,

Thus, 7, is simple, and 0 < 7, < f.
Claim: {7,}°_, converges pointwise to f.

Let x € E. Let € > 0. Choose Ny € N so that 270 < ¢ and f(z) < No.
Let n = Ny. Therefore, x € E,. Thus, 7,(x) = ¢ (x).

Subcase a: ¢n,(z) > 0.
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Then, Tn(x) = ¢n(x) and |f(x> - Tn(x)‘ = f(x) - ¢n(x) < €.

Subcase b ¢, () < 0:

If(2) — Tn(2)| = f(2) < fu(z) — dn(x) <e.
Thus, lim, o 7 (2) = f(x).

Now, set 0, = maxj<, 7j. Thus, 0, is measurable. 0, < 0,41 by defini-
tion. 7; < f. Thus, 0 < 0y, < f. Since {7,};°_, converges pointwise to f, it
follows that {o,},_, converges pointwise to f.

Case 2: f 2 0.

By Case 1, there exist a sequence of simple functions {oy,}r_, that
converges pointwise to f* and so that 0 < 01, < f*. By Case 1, there is a
sequence of simple functions {o2,},_, that converges pointwise to f~ and
so that 0 < 09, < f~. Set 0, = 014, — 02, Since f = fT — f~, {on}",
converges to f pointwise. O

3.4 Littlewood’s three principles

The extent of knowledge required is nothing like so great as is
sometimes supposed. There are three principles, roughly ex-
pressible in the following terms: Every [measurable] set is nearly
a finite union of intervals; every [measurable| function is nearly
continuous; every pointwise convergent sequence of [measurable]
functions is nearly uniformly convergent. Most of the results of
[the theory| are fairly intuitive applications of these ideas, and
the student armed with them should be equal to most occasions
when real variable theory is called for. If one of the principles
would be the obvious means to settle the problem if it were ‘quite’
true, it is natural to ask if the ‘nearly’ is near enough, and for a
problem that is actually solvable it generally is.

J.E. Littlewood

At first, measure theory might seem to be an imposing and very technical
subject. However, Littlewood’s quote explains that measure theory only
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improves upon a naive approach to integration by ¢ (albeit a very important
€).

We have already seen Littlewood’s first principle precisely. The Vitali
covering lemma (Theorem [7]) shows that given a measurable set E of finite
measure, then for each ¢ > 0, there is a finite collection of open intervals
whose union U is "nearly equal to” E in the sense that

pw(E—-U)+puU—FE) <e.

In this section, we will work towards making the other principles precise.

3.4.1 The third principle: Egoroff’s theorem

Here, we will show that pointwise convergence of measurable functions is
“nearly” uniform convergence. To do so, we start with the following lemma.

Lemma 10. Suppose u(E) < o, and suppose {fn}_y is a sequence of
measurable functions on E that converges pointwise to a real-valued function
f- Then, for all €1,€2 > 0 there exists Ny € N and a measurable A < E so
that p(E — A) < €2 and so that |f(z) — fr(z)| < €1 whenever k = Ny and
xeA.

Proof. Let €1,e5 > 0 and for each Ny € N, let

o0
En, = ﬂ {zeE : [fulz) - f(z)| < e}
n=Np
Since f, — f,
E = U ENO
N()EN
Since En, € Eny+1,
Nlim w(EnN,) = p(E).
0—®0

So, since u(E) < oo, there is a non-negative integer Ny so that p(F) —
w(En,) < €2. Set A = En,. O

With this lemma in hand, we can now prove a somewhat surprising theo-
rem, that pointwise convergence is “nearly” the same as uniform convergence
for measurable functions.

Theorem 31. (Egoroff’s Theorem) Suppose pu(E) < o and {fn}r_ is a
sequence of measurable functions on E that converges pointwise to a real-
valued function f. Then, for every e > 0 there is a closed set FF < E so that
{fn}ie_y converges uniformly to f on F' and u(E — F) < e.
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Proof. Let € > 0.

Claim 1: There is a measurable set A € E so that u(E — A) < €¢/2 and
{fn}_o converges uniformly to f on A.

Proof of Claim 1: By Lemma for each n € N, there is a non-negative
integer M,, and a measurable set A,, € E so that u(F — A,) < €2~ (n+2) and
|f(z) — fi(z)| < 27" whenever z € A, and k > M,. Set A =(,_, An.

Subclaim l.a: u(E — A) < €/2.

Proof:
e} ee}
WE—A)=u(| JE—-Ay) <ed 270 =¢/2.
n=0 n=0

Subclaim 1.b: {f,},°_, converges uniformly to f on £ — A.

Proof: Let ¢ > 0. Choose n € N so that 27" < ¢. Let z € A, and let
k= n. Since x € A, |f(z) — fr(z)] <27" < €.

Claim 2: There is a closed set F' < E so that {f,}°_, converges uni-
formly on F' and u(E — F) <e.

Proof: By Theorem [6] there is a closed F = A so that u(A — F) < €/2.
Sou(E—F)=wE—-A)uvpuA-—F)<e O
3.4.2 The second principle: Lusin’s theorem

We can now make the second principle precise as well, to show that mea-
surable functions are “nearly” continuous functions. To establish this, we
start with a simpler version.

Lemma 11. Let f be a simple function defined on E. Then for each € > 0,
there is a continuous function g : R — R and a closed set F < E for which

f=gonF andm(E—-F)<e

Proof. Let ai,ao,...,a, be the distinct values taken by f, and let them
be taken on the sets E1, Eo, ..., E,, respectively. The collection {Ej};_; is
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disjoint since the a; ’s are distinct. According to Theorem [4] we may choose
closed sets Fy, Fy, ..., F, such that for each index k,1 <k <n

I, € E, and m(Ek — Fk) < E/TL

Then we consider the set F' = [ Ji'_; F), which must be closed (as the finite
union of closed sets). Since {E}},_; is disjoint,

W(E—F) (O Ek—Fk> zn: (B — Fy) <

Define g to be a function on F' which takes the value ap on Fj for
1 < k < n. Since the collection {F},_, is disjoint, ¢ is properly defined.
Moreover, g is continuous on F' since for a point x € F;, there is an open
interval containing = which is disjoint from the closed set | J,_.; Fx and hence
on the intersection of this interval with F' the function g is constant. But
g can be extendedﬂ from a continuous function on the closed set F' to a
continuous function on all of R. The continuous function g on R has the
required approximation properties. [

Using this and Egoroff’s theorem, we can prove the full version of Lusin’s
Theorem.

Theorem 32 (Lusin’s Theorem). Suppose f : E — R is measurable. Then,
for every e > 0 there is a closed set F' and a continuous function g : R — R
sothat F € E, u(E—F) <e¢, and g(t) = f(t) for allt e F.

Proof. We consider only provide details for the case that m(FE) < o. Ac-
cording to the Simple Approximation Theorem, there is a sequence {f,} of
simple functions defined on E that converges to f pointwise on E. Let n be
a natural number. By the preceding proposition, with f replaced by f,, and
e replaced by €/2""! we may choose a continuous function g, on R and a
closed set F,, < F for which

€

fon=gnon F, and u(E - F,) < pTYSE
According to Egoroff’s Theorem, there is a closed set Fy contained in F
such that {f,} converges to f uniformly on Fj and p (E — Fy) < €¢/2. Define

F =(\r_, F,. Thus, we have that

2This is known as the Tietze Extension Theorem. A proof can be found in your favorite
topology book (for instance, see [Muni4] Chapter 4 Section 35).
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0 0
M(E—F)=m<[E—Fo]U g [E_Fn]> <=+ ) 271126

n=1 n=1
The set F' is closed since it is the intersection of closed sets. Each f, is
continuous on F since F' € F,, and f, = g, on F),. Finally, {f,} converges to
f uniformly on F' since F' € Fy. However, the uniform limit of continuous
functions is continuous, so the restriction of f to F' is continuous on F.
Finally, there is a continuous function g defined on all of R whose restriction
to F equals f (again by the Tietze Extension Theorem). This function g
has the required approximation properties. O

Exercise 13. Prove Lusin’s theorem in the case that u(E) = o0.
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Chapter 4

Lebesgue Integration

After almost 60 pages of lecture notes (and over 2000 lines of I¥TEXcode),
we can finally start discussing how to integrate functions.

We start by defining the Lebesgue integral for non-negative simple func-
tions, which will be the fundamental building block for the Lebesgue integral.
Definition 32. If s : X — [0,0) is a simple function, and if E € X is
measurable, then the Lebesgue integral of s over F is defined to be

JE sdp = Z ap (5_1({(1}) NE).

acrange(s)

Jsdu.
E

We denote this by

(s ()N E)
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Note that in Definition we use the convention 0 -0 = 0 (since the
measure of the set where s vanishes will often be infinite).
We can also consider integrals over all of X, which is defined as

| sau= 3 eutsltal)
X acran(s)
if s: X — [0,00) is simple.

Example. There are a few examples of integrals that we can compute im-
mediately.

1. If E is a measurable set, then SR XEdp = p(E
Then, ran(s) = {0,1}. s71[{0}] = E¢ and s~ '[{

. Proof: let s = xg.

)
1}] = E. So,

| s =00(E) 4 10(8) = ().

2. If f is the Dirichlét function, then SR fdu=0.

3. If s is a non-negative step function on [a,b], then S[a b] sdu = SZ sdx.
Proof: HW ezercise.

Let us now establish some basic properties of the Lebesgue integral (for
simple functions).

Proposition 33. Suppose s : X — [0,00) is simple and that E < X is

measurable. Then,
f sdu = f SXE di.
E X

Proof. Let t = sxyg. Without loss of generality, we can take F # X. Then,
ran(t) = s[E] u {0}. Thus, ran(t) — ran(s) < {0}.

When a # 0, t(z) = a if and only if z € E and s(z) = a; i.e. x €
s [{a}] n E. Thus,

Ltdu — Y ault'[{a}] A E)

aeran(t)

— Yt {a}l A E)

aeran(t)—{0}

= Y au(s ' [{a)] N E)

acs[F]

= Y ap(s'[{a}] n B)

acran(s)
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Lemma 12. Suppose s : X — [0,00) is a simple function. Suppose E, Es
are measurable sets so that E1, Eo € X and so that E1 n Ey = . Then,

J su:J sdu%—f sdj.
FE1UFEs5 FE1 Eo

Proof.

fEluEfd“ = 2 (s ] (Brv By)

a€cran(s)

= alu(sT'[{a}] A En) + p(sT [{a}] 0 E»))

aeran(s)

J sdu—kj sdpu.
Eq E>

We now show that the Lebesgue integral is linear, which is one of its

O]

most important properties.

Theorem 34. Suppose si,s2: X — [0,00) are simple functions.
1§ (st 4 s2)du = §y sidp+ §y s2dp.
2. If ce R, then SX cs1 dp = CSX s1dp. E|

Proof. Part a: '
For each a € ran(s;j), let EY = sj_l[{a}]. For each a € ran(s;) and b €

ran(sz), let Eqp = E(gl) o) Eé2). Note that:
1. For each a € ran(sy), E((zl) = Uberan(52) Eqp.

2. For each b € ran(ss), EéZ) = Ueran(sy) Fab-
3. X = Ua,b E,p, and
4. Ea,b N Ea’,b/ =@ if ((L, b) #* (a’,b’).

MIf one wants to be pedantic here, they should require that ¢ > 0. For the purposes of
simplifying the proof of the next theorem, I will leave off this assumption.
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By Lemma

On the other hand,

L(s +t)dy = Z; La,b(s +t) dp.

| rrsdn = N s el 0 B

So,

JE(Sl + s2) dp

Part b:
By definition,

ceran(s+t)
= (a+b)u((s1+ s2) H{a+b}] n Eqp)
= (a+b)u(Eqp)

2(@ + b):u(Ea,b)

a,b

Z Z a:U'(Ea,b) + Z Z bN(Ea,b)
acran(sy) \ beran(sz) beran(s2) \acran(sy)

> e+ N (B

acran(sy) beran(sz)

J Sldu+J So .
E E

JE csdp = Y cap(Ey,)

cacran(csy)

= ¢ Y auB)

acran(sy)

= cf sdp.
E

O]

We now show that the integral is monotonic, which is another of its
essential features.

Theorem 35. If s1 < so, then SX spdp < SX S dp.
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Proof. Consider the function t = s5 — s1. This is positive and simple func-
tion, so we have that

fSQd/,L—J sodu = Jtdu
X X X

= Z ap(E,) = 0.

aeran(t)

O]

Exercise 14. Rearrange the proof of Theorem [39 to not require the differ-
ence of integrals (which we have technically not defined yet).

4.1 The Lebesgue integral for non-negative func-
tions

We can now define the Lebesgue integral for non-negative functions.

Definition 33. If f : X < [0,00] is a measurable function, and if E is a
measurable subset of X, then the Lebesgue integral of f over E is

sup{J sdy :0<s<f and sis simple}.
E

[

Note that if s : X — [0,00) is simple, and if F < X is measurable, then
by Theorem [34] Definitions [32] and [33] yield the same value.

This shows that the definition of the Lebesgue integral is consistent. We
can now state two principles for the Lebesgue integral, which are simple
consequences of the definition but are also quite useful.

We denote this by

Observation 4. Suppose f : X — [0, 0] is measurable, and suppose E < X
18 measurable.

1. If s: X — R is a simple function so that 0 < s < f, then {psdp <
§p fdu.

2. Suppose o € [0,00]. §5 fdp < o if and only if §sdp < a for every
simple s : X — R so that 0 < s < f.
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We now establish two propositions about the Lebesgue integral. First
we show that the Lebesgue integral of a function on a subset is the same as
the integral of the product of the function which the characteristic function

Proposition 36. Suppose f : X — [0, 0] is measurable and that E < X is
measurable. Then, §, fdu = §y fxedp.

Proof. To do this, we first show that §. fdu < §y f - xgdp.

For this, set o = { f - xg dp and suppose s : X — [0,00] is a simple
function so that s < f.
Then,

s-xXe < [f-XE-

The function sxg is simple so we have that
J S'XEduif [ xedu
X X

by Definition By Proposition 33, {, sdu = §y s xzdu. So,

J Sduéf Ixedu
E X

JE fdp < L fxedu.

and thus

We now show the opposite inequality.

Lf-XEdu<JEfdu-

Suppose s : X — [0,00) is a simple function so that s < f - xg. Since f
is non-negative, s < f. Thus,

fsd,uéf fdp.
E E
fsd,uzf sdpu.
E X

J sduéj fdp.
X E

But,
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Proposition 37. Suppose f,g: X — [0,00] are measurable. If f < g then
Sx fu<Sygdu

Proof. Suppose f < g. If s is a simple function so that 0 < s < f, then

s<g.
So,
{f sdpu :0<s< f and sis simple}
X
Q{f sdu :0<s<g and sissimple}
X
Thus, §, fdu < gdp. O

We now establish one of the most important results about the Lebesgue
integral, the monotone convergence theorem. This is a central and very
useful result which shows that we can interchange limits and integration for
increasing sequences of functions.

Theorem 38. (Monotone Convergence Theorem): Suppose f, fo, f1,... :
X — [0,00] are measurable and that f, < fni1 for all n € N. Suppose
f(t) =limy, o0 fn(t) for allt € X. Then,

J fdu= limf fndu.
X n—oJx

Proof. We have that f, < f for all n € N since f, < fh,11. Let a =
limy, o0 § i fndp. Then, o < § fdp.

Claim 1: SX sdy < o whenever s : X — R is a simple function so that
0<s<f.

Proof Claim 1: Suppose s : X — R is a simple function so that 0 < s < f.
For each n € N, let

Xn={zxeX : s(z) < fnlx)}.

So, X =, Xn (s < f). Also, X;, € Xp41. On the other hand,

J sd,usf fnduéffnduéoz.
Xn Xn X
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and

lim sdy = lim ap(s {a}] N X,
) "Hwaegn:(s) (s™ [{a}] )

= ap(s {alln X)) = | sdu.
- Y s a0 X) = | sda

acran(s)
SO, {y sdu < a.

Claim 2: {, sdy < a whenever s : X — R is a simple function so that
0<s<f.

Proof Claim 2: Suppose s : X — R is a simple function so that 0 < s < f.
Let s, = (1—27")s for each n € N. Thus, 0 < s, < f. Hence, { s, du < a.
Therefore, (1 —27") { s, dp < o for each n € N. Thus, {, sdu < o

Thus, { fdu < o O

Using the monotone convergence theorem, we can now show that the
Lebesgue integral is linear (we had previously only shown this for simple
functions).

Theorem 39. Suppose f,g: X — [0,0] are measurable.
L Sy(f+g)dp =Sy fdu+S§ygdu.
2. If ¢ >0, then §ycf du = c{y fdp.

Proof. By the proof of Theorem there exist non-decreasing sequences
of non-negative simple functions {s,}°_, and {t,}_, so that s, — f and
t, — g. Apply MCT. O

This has the following corollary, which is essentially a restatement of the
Monotone convergence theorem.

Corollary 12. Suppose fo, f1,... : X — [0,00] are measurable and that
flx) =>4, fu(x) for allz € X. Then,

JX f = 20 JX i

Proof. Set g;, = Zﬁ:o fn- Therefore, 0 < g < ggy1 and g — f. Apply
MCT. O
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In general, pointwise limits of functions need not preserve the Lebesgue
integral. However, there is an inequality which always holds, which is known
as Fatou’s lemma.

Lemma 13 (Fatou’s lemma). Suppose fo, f1,...: X — [0,00] are measur-
able and that f(x) = liminf,, f,(x) for all x € X. Then,

f fdu < liminff fndp
X n X

Proof. Set g, = inf,>y fr. Thus, gp < f, f = limg gk, and gx < gr41 and
gr < f. Thus,

| fan =t | gud

X E Jx

lim inff gr. du
k X

< liminfj frdu.
k X
O

To see that Fatou’s inequality need not be an equality, consider the
following example.

Example 1. Consider the sequence of functions

1
In = —X[on]-

We have that f, — f =0 uniformly. However, for all n
1
f fondp=—=-(n—-0)=1,
R n

whereas

| rau=o

Before moving on to the Lebesgue integral of functions which can be both
positive or negative, let us note one very important inequality in probability,
known as Chebychev’s inequality.

Theorem 40. Suppose f: X — [0,0] is measurable. Then, for all A > 0,
1
ilre X J@)=N) < | Fau
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Proof. We can assume that {, fdu < oo, or else the theorem is trivial.

Set By ={re X : f(zx) = A}
Set h = Axg,. Thus, 0 < h < f. Therefore, {\ hdy < {y fdu. But,
Sy hdp = Mu(E)). O

4.2 The Lebesgue integral of real-valued functions

To define the Lebesgue integral of a real-valued function, we restrict our-
selves to functions whose absolute value is integrable. This might seem
strange initially, but this idea should be somewhat familiar because it is
exactly the distinction between convergent series and absolute convergent
series.

Definition 34 (Integrable functions). Suppose f : X — [—00,00] is mea-
surable. Suppose E is a measurable subset of X.

1. f is integrable over E if { |f|du < .
2. f is integrable if it is integrable over X.

For these functions, we can just define the Lebesgue integral of the dif-
ference between the integrals of the positive and negative parts.

Definition 35 (Lebesgue integral). Suppose f : X — [—00,00] is integrable
and E € X is measurable. The Lebesgue integral of f over E is defined to

be
f frdp — f [~ dp.
E E
This is denoted by SE fdu.

Before moving on, we make two brief remarks.

Observation 5. 1. If { |f|du < 0, and if E = X is measurable, then
S fTdup and §5 f~ dp are finite.

2. If f is non-negative and integrable, then Definitions and [33 yield
same value for § f dp.

Proposition 41. Suppose f : X — [—o0, 0] is integrable and E < X is

measurable. Then,
| rau={ s -xpan
E X
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Instead of giving a full proof, note that we already know this if f > 0.
Otherwise, we set ¢ = f - xg. Then we have that ¢ = f* .y and
9 =/ -xe

We can now show that the integral is monotonic and linear.

Theorem 42. Suppose f,g: X — [—00, 0] are integrable and f < g. Then,
Sx fdp <xgdpu.

To see this, note that we have already established this if f > 0. Other-
wise, note that f* < ¢g" and g~ < f.

Theorem 43. Suppose f,g: X — [—00, 0] are integrable and that o, 5 € R.
Then, of + Bg is integrable and § (oof + Bg)dp = oy fdp+ B gdpu.

Proof. We start by noting that |af + Bg| < |a||f| +|8||g|- Thus, af + Bg is
integrable.

Claim 1: §(f +g)dp = §x fdu+ §y gdp.
Proof Claim 1: Set h = f + g. Then,
WP —h™=f"—f"+g" —g"

So,
Rt +f +g =ft+gt+h.
Thus,

f h+d,u—|—f f+du+J g_du—f f+du+f g+du+f h™ dpu.
X X X X X X

Now rearrange terms.

Claim 2: {, afdu = of fdu.

We will skip the proof of this claim.

Corollary 13. Suppose f: X — [—o0, 0] is integrable. Then,

Jsof S
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Proof sketch: f,—f < |f]. Apply monotonicity and linearity. This result
is known in the book as the Integral Comparison test, where it is stated as
follows.

Corollary 14. Suppose f: X — [—00, 0] is measurable and

fl<g

for some integrable function g. Then, f is integrable and

Jrof S

In any case, we can use this to show the following proposition
Proposition 44. Suppose f : X — [—00, 0] is measurable and either inte-
grable or non-negative. If E € X has measure 0, then SE fdu=0.

4.2.1 The dominated convergence theorem

We now prove one the most fundamental theorems in measure theory: the
dominated convergence theorem.

Theorem 45. Suppose fo, f1,...: X — R are measurable and that f(z) =
lim, o fn(z) for allz € X. Suppose there is an integrable g : X — [—00, 0]
so that |fn(x)| < g(x) for all z € X. Then, [ is integrable,

i [ [fa— fldu=0, (4.1)
and
lim fndu = J fdu (4.2)

Proof. Since |f(x)| = limp—qo | fn(x)] < g(z). Thus, f is integrable.
To establish Equation we note that |f, — f| < 2¢ and that

29 = liminf(2g — |, — f1)-

By Fatou’s Lemma,

Jdi,u < liminff (29 — |fn — fl)du
X "X

J 2gdu—limsupf |fn — fldp
X n X
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So,
limsupf |frn— fldu <0.
n b's

Thus, limy, § | fn — fldu = 0.
Equation [£.2] now follows from Equation O

As a preliminary application, we can now give a disproportionately so-
phisticated proof that the harmonic series diverges.

Exercise 15. Using Example|l], show that the series
0
n=1

diverges. Hint: Consider the function g(z) = sup,, f(z).

S|

This argument was posted by Tao as an lanswer on MathOverflow,| but
I actually find it helpful to remember the dominated convergence theorem
and Fatou’s inequality.

Theorem 46. Let f : E — [—0, 0] be integrable. Suppose {E,})_q is a
pairwise disjoint sequence of measurable subsets of E and set E = | J,, En.

Then,
e}
fdup = f fdp.
Proof. Set
F, = |JB
j=0

Thus, lim, o fr = f. |fa] < |f|. So, by DCT

lim fndu=f fdu
E E

n—o0

But,
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This implies the following corollary.

Corollary 15. (Continuity of integration): Suppose f : X — [—o0,00] is
integrable.

1. If By € Ey... < X are measurable, and if E = | J,, Ep, then

j f du= limf fdp.
E n—o Jp

2.IfX2Ey2FE,2..., and if E =), Ey, then

J fdu= limf fdp.
E n—w Jp

4.2.2 Uniform integrability and the Vitali convergence the-
orem

We conclude our initial discussion of Lebesgue integration by finding a cri-
terion which allows us to interchange limits and integrals. Let us start by
making an observation which was actually an earlier homework exercise and
says that we can break up sets of finite measure into the disjoint union of
sets with small measure.

Lemma 14. Let E be a set of finite measure and 6 > 0. Then E is the
disjoint union of a finite collection of sets, each of which has measure less
than 9.

Proof. By the continuity of measure,

lim (B ~ [-n,n]) = p(J) =0

n—o0

Choose a natural number ng for which u (E ~ [—ng,no]) < 0. By choosing
a fine enough partition of [—ng,no], express E n [—ng,ng| as the disjoint
union of a finite collection of sets, each of which has measure less than . [J

Proposition 47. Let f be a measurable function on E. If f is integrable
over E, then for each € > 0, there is a § > 0 for which if A € E is measurable

and u(A) < 9, then
| 1<
A

. Conversely, in the case u(E) < o, if for each € > 0, there is ad > 0 for
which this inequality holds, then f is integrable over E.
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Proof. The theorem follows by establishing it separately for the positive
and negative parts of f so WLOG we take f > 0 on E. First, we assume
f is integrable over E and let € > 0. By the definition of the integral of a
nonnegative integrable function, there is a measurable bounded function f.
of finite support which satisfies

ogfegfonEand0<j f—f fe<€/2
E E

Since f — fe = 0 on E, if A € FE is measurable, then, by the linearity and
additivity over domains of the integral,

[ =] o= v=sa<|v-ra=| r-] fo<er

But f. is bounded so we can find M > 0 for which 0 < f. < M on Ej.
Therefore, if A € F is measurable, then

Lf<Lf€+€/2<M'M(A)+€/2-

We then take 6 = ¢/2M. Then we have that if u(A) < J, then

L fl<e

Conversely, suppose m(E) < oo and for each € > 0, there is a § > 0 for
which ;1(A) < 6 implies §, |f| <e.

Let dg > 0 be such that §, | f| < 1 whenever ;(A) < dg. Since pu(E) < oo,
the previous lemma shows that we can consider F as the disjoint union of a
finite collection of measurable subsets {Ek}gzp each of which has measure

less than dg. Therefore
N
2 f f<N
k=1"Ek

By the additivity over domains of integration it follows that if A is a non-
negative measurable function of finite support and 0 < h < f on E, then
§zh < N. Therefore f is integrable. O

With these results in mind, we give the following definition of integra-
bility for a sequence of functions.
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Definition 36. Suppose fo, f1,... are measurable functions on X. {fn}_,
is uniformly integrable if for every ¢ > 0 there is a § > 0 so that

| Vtald <
A

whenever n € N and A is a subset of X whose measure is smaller than 9.

Theorem 48 (Vitali convergence theorem). Suppose u(X) < o0 and { fn}_g
s a uniformly integrable sequence of measurable functions on X that con-
verges pointwise almost everywhere to f. Then, f is integrable and

lim fn dp :f f du.
n—0o0 be D¢

We will not cover the proof in class. However, the proof is contained in
the book (page 94).

Intuitively, we can think of uniform integrability as being analogous to
equicontinuity for a sequence of functions, in that each function in the se-
quence satisfies a certain estimate uniformly in n. From this perspective,
the Vitali convergence theorem is roughly analogous to the Arzela-Ascoli
theorem (although for the latter theorem we must pass to a subsequence to
find functions which converges uniformly).

4.3 Convergence in measure

This subsection is taken from Section 5.2 of Royden-Fitzpatrick with mini-
mal modifications.

There is one more mode of convergence that we need to know for the
qualifying exam, which is convergence in measure. This notion is particu-
larly useful in probability theory, because it implies that the measure (i.e.,
probability) where one function differs greatly from another becomes ex-
tremely small.

Definition 37. Let {f,} be a sequence of measurable functions and f a
measurable function (all defined on E'), so that f and all of the f, are finite
a.e. The sequence {f,} is said to converge in measure on E to f provided
for each n > 0,

Jim p{ze B[ [fu(z) = f(z)] >0} =0
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It is a good exercise to show that a sequence of (finite a.e.) measurable
functions which converge uniformly also converge in measure. However, we
can also say something stronger and relate pointwise convergence almost
everywhere to convergence in measure.

Proposition 49. Assume E has finite measure. Let {f,} be a sequence
of measurable functions on E that converges pointwise a.e. on E to f and
suppose that f is finite a.e. Then {f,} — f in measure on E.

Proof. The function f is measurable since it is the pointwise limit almost
everywhere of a sequence of measurable functions. To prove convergence in
measure we let € > 0 and seek an index N such that

p{x e E|fo(z) — f(z)] > n} <eforaln=N,

where 7 is a positive number.

Using Egoroft’s Theorem (Theorem, we can find a measurable subset
F of E with u(E ~ F) < € where {f,} converges to f uniformly. As such,
we can find N large enough so that

|fn— f| <nmon F for all n > N.

Thus, for n > N, {zre E | | fu(x) — f(z) |>n} € E ~ F, which implies
that the measure is less than e.
O

This result fails if F has infinite measure (Exercise: find a counter-
example). Furthermore, there are sequences which converge in measure
which do not converge pointwise, so the converse is false. However, given
a sequence of functions which converge in measure, there is a subsequence
which converges pointwise almost everywhere.

Theorem 50. If {f,} — f in measure on E, then there is a subsequence
{fn,} that converges pointwise a.e. on E to f.

Proof. By the definition of convergence in measure, there is a strictly in-
creasing sequence of natural numbers {n;} for which

1
pfeze B | fi(z) — f(z) |> 1/k} < o for all j > ny.
For each index k, define
Ey={zeE| | fo, — f(x) |> 1/k}
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Since p (Ey) < 2%, we have that Y., ; m (Ey) < o0. The Borel-Cantelli
Lemma then implies that for almost all x € E, there is an index K (x) such
that x ¢ Fy, if k > K(x), that is,

| fr, () — f(2)] < 1/k for all k > K(x).

Therefore
lim f,, (z) = f(x).
k—o0

In this proof, the index K (z) is allowed to depend on z, as it might not
be possible to choose such an index uniformly in x. O

The following proposition shows that many of the theorems in this course
can be weakened to require convergence in measure rather than pointwise
everywhere convergence.

Proposition 51. Fatou’s Lemma, the Monotone Convergence Theorem,
the Lebesgue Dominated Convergence Theorem, and the Vitali Convergence
Theorem remain valid if “pointwise convergence a.e.”
vergence in measure.”

is replaced by ”con-
The proof is left as an exercise.

4.4 The Riemann and the Lebesgue integral

At this point, we have defined the Lebesgue integral and discussed some of
its fundamental properties. However, it is natural to ask how this integral
relates to the Riemann integral, which is the focus of this section. To do so,
we start by proving some small lemmas.

Lemma 15. Suppose f : [a,b] — R is Riemann integrable. Then, there is
a non-decreasing sequence of step functions {s1 .}y and a non-increasing
sequence of step functions {san}n_o so that for allm € N s1, < f < sap
and

b
J (827n — Sl,n) <27,

a

The proof of this is left as a homework exercise.

75



-n —
2 { /“\\\ o

e N —

We now prove a “sandwich” lemma for these integrals.

Lemma 16. Suppose {¢n}_ is a non-decreasing sequence of integrable
function on X, and suppose {in}2_ is a non-increasing sequence of inte-
grable functions on X. Suppose ¢p, < f < 1y, for all n e N and that

lim | (¢Yn —¢n) du=0.

n—ao0 X

Then:
1. ¢ — f a.e. and Y, — [ a.e.

2. f is integrable

3.
lim ¢On dp = lim f Up dp = J fdu.
Proof. (a): Let ¢ = lim,,,o, ¢, and ¥ = limy, o0 ¥,. Thus, 0 < ¢

Y, — ¢p. Thus, § (v — @) du = 0. Therefore, 1) = ¢ a.e. Thus, ¢
a.e. Thus, f is measurable.

¢

< /A

f
(b): We have 0 < f — ¢o < ¥o — ¢o. Thus, f — ¢g is integrable. Thus, f
is integrable.

(c): This follows from monotonicity. O
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With these two results in hand, we can now show that the Riemann in-
tegral is equal to the Lebesgue integral, whenever the former is well-defined.

Theorem 52. Suppose f : [a,b] — R is Riemann integrable. Then, f is
Lebesgue integrable and the two integrals are equal. 1.e.

Lbf - f[aﬂfdu.

Proof. By Lemma [I5] there is a non-increasing sequence of step functions
{san}2_ so that for all n e N 51, < f < s2, and S Sp2 — Sp1) <27 It
follows from Lemma [T6] that f is integrable. Since

b b b b
J Spjdp = J Sn,j, and since J Sp,1 < f < J 51,2,
[a,b] a a a a

)

it follows that

f= lim In = f fdu.
J n—aw [a,b] a
O

As such, all that remains is to determine necessary and sufficient condi-
tions of a function to be Riemann integrable. For this, we have the following
result.

Theorem 53. Suppose f : [a,b] — R is bounded. Then, f is Riemann
integrable if and only if f is continuous a.e..

Proof. (=): Suppose f is Riemann integrable. By Lemma there is a
non-increasing sequence of step functions {sa,}_, so that for all n € N

S1n < f < 824 and SZ(Sn,2 —Sp1) <27

Let
E; = {z : 3ne N s;, is discontinuous at x} j = 1,2
Ero = {o: lm su(e) # f@) = 1,2

E = EiuEy,uFEsu LBy

Thus E; U Ej is countable. So p(FE) = 0.

Claim: If 2o € [a,b] — E, then f is continuous at x.
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Proof Claim: Suppose zy € [a,b] — E. Let € > 0. Choose Ny so that
s2,N, () —51,N, () < €. There exist 6 > 0 so that s; y, and sz y, are constant
on (xg — 6,z + 9). Therefore, if |z — x| < 0, then

|f(z) — f(20)| < [s2,N0 () — 51,80 (20)| < €.

(«<): Suppose f is continuous a.e.. For each n, let P,, denote the uniform
partition of [a, b] of width (b—a)/27 ™. Let agn) denote the j-th point in P,

where j =0,...,2". Set Ij(n) = (ag-n),ayi)l].
Let

mg»n) = inf{f(2)) : 2’ € Ij(n)}
() _ : (n)
M;" = sup{f(a) : 2 e [V}

When z € I](n), set

We then define the set
E ={z € a,b] : f is discontinuous at x} U {ag-n) :neN and 0<j < 2"}.
Thus, u(E) = 0.

Claim 1: If 29 € [a,b] — E, then lim, o ¢n(x0) = limy,_ o ¥ (z9) =
f (o).

Proof Claim 1: Suppose zg € [a,b] — E. Let € > 0. Choose ¢ > 0 so that
[z —xol <0 = |f(z) — fwo)| <&

Choose ng € N so that (b —a)27™ < §. Let n = ng. There is a unique
j so that x € IJ(-n). Therefore, M](»n) — m§n) < (b—a)27™™ < 2 So,
[s2.n(2) = f(@)], [s1,n(2) = ()] < 2e.

Claim 2: lim,,_,« S[a 0] (Vn, — @) dp = 0.
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Proof Claim 2: Since f is bounded, there is a positive number M so that
0 < ¥p — ¢ < M for all n € N. Thus, by DCT

lim (thn — én) dp = 0.

=0 Jla,b]

Claim 3: f is Riemann integrable.

Proof Claim 3:

Yn dp
[a,b] a

WV \% Il
-~ = <
3

\%
%
2.

©
S

Il
-
S

.
=

Therefore,

O]

Although it is genuinely a stronger condition for a function to be Rie-
mann integrable versus Lebesgue integrable, it turns out that the building
blocks for each of these integrals are not so different. In fact, we have the
following proposition (proof taken from Mathstackexchange [whi)

Proposition 54. Step functions are dense inside the space of simple func-
tions.

Proof. Tt suffices to show that the characteristic of a measurable set of finite
measure can be approximated by step functions. Take a measurable set A
with p(A) < +o0; by regularity, we can find an open set U > A such that
p(U\A) < e.

U can be written as a countable union of disjoint intervals:

o0
U= L_JOIn
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so, we can find N such that
" ( U In) <E€.
n>N

N
h(z) = Y X1, (@)
n=0

Hence, we define

and we have
J]h(a:) —ya(2)] < 2.

So, the step functions are dense among the simple functions.
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Chapter 5

Differentiation and
Integration

The fundamental theorems of calculus provide a foundational relationship
between the Riemann integral and the derivative. We now want to establish
versions of these theorems for the Lebesgue integral.

5.1 Monotone functions

A function is monotone if it is either increasing or decreasing. Such func-
tions play an essential role in the Lebesgue versions of the fundamental
theorems of calculus for two reasons.

1. A theorem of Lebesgue asserts that a monotone function on an open
interval is differentiable almost everywhere.

2. A theorem of Jordan shows that a very general family of functions
(i.e., those of bounded variation) may be expressed as the difference of
monotone functions and therefore they also are differentiable almost
everywhere on the interior of their domain.

Theorem 55. Every function that is monotone on an open interval is con-
tinuous except at a countable set of points.

Proof. Suppose I is an open interval, and suppose f is a monotone function
on I. Without loss of generality, f is non-decreasing. Set

Ez{ael . lim f(z) # lim+f(x)}.

T—a Tr—a
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For each a € F, let

by = lim f(x)
Ta = xlirzhf(x)

Since f is non-decreasing, ¢, < r, for all a € F.

Claim 1: if a,b € E, and if a # b, then (¢, 74) N (by, 1) = .
Proof Claim 1:

Suppose a,b € E and a # b. WLOG a < b. Since f is non-decreasing,
for all zg,x1 € 1,

zo<a and z1 >b = f(xg) < f(z1).

Thus, r, < 4.
Claim 2: F is countable.

For each a € E, choose a rational number ¢, € (rq,%¢,). By Claim 1,
a — (g is one-to-one. Thus, F is countable.
O

We want to show that monotone functions are differentiable almost ev-
erywhere. For this, we will need to define some concepts related to deriva-
tives.

Definition 38. Suppose f : [a,b] — R is integrable. When h > 0 and
x € [a,b], let
. x+h)— f(z
it (f)(a) = LE W=

We call Diff,(f) a divided difference function.

Definition 39. Suppose f : A — R and xq belongs to the interior of A.

1. D(f)(wo) := limy_,o+ supg«¢|<p Difft(f)(z0). We call D(f) the upper
derivative of f.

2. D(f)(wo) := limy,_,o+ infoy<p Diffe(f)(w0). We call D(f) the lower
derivative of f.
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If D(f)(x0) = D(f)(wo), then f is differentiable at xo and we set f'(x) =
D(f) (o).

We can immediately see that D(f)(xo) < D(f)(x0).
Lemma 17. Suppose f : [a,b] — R is non-decreasing. Then:

1. For all a > 0,

p({z € (a,b) = D(f)(2) = a}) < =(f(b) — f(a)).
2 u({we (a,b) ¢ D(f)(x) = o}) = 0.
Proof. : Suppose a > 0. Set
Ey ={x € (a,b) : D(f)(z) = a}.

Set
F ={[c,d] : [e,d] < (a,b) and f(d) — f(c) = a(d —c)}.

Claim 1: F is a Vitali covering (recall Definition of E,.

Proof Claim 1: Let zg € E,, and let € > 0. D(f)(x) = a. So, there is a
d > 0 so that for all h € (0,0), there is a ¢ so that |[t| < h and

f(xo +1t) — f(xo)
t

= . (5.1)

Choose h > 0 so that h < d,¢/2. and [xg — h,zo + h] < (a,b). Choose t so
that |t| < h and (5.1)). Set

¢ = min{xg,zo + t}

= max{zg,zo + t}
Since f non-decreasing, f(d) — d(c) = a(d — ¢). Thus, [¢,d] € F, xg € [c, d],
and d —c<e.

Claim 2: *(Eq) < 2(/(b) — f(a)).
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Proof Claim 2: Let € > 0. By the Vitali Covering Lemma, there exist
[co,do], .-, [cj,d;j] € F sothat ([co,do],...,[cn,dyn]) is pairwise disjoint and
so that

7=0
Therefore,
pr(Ea) < e+ Z(dg —¢)
j=0
< eta ') (F(d) — fle)
j=0
< e+ a Y(f(b) — f(a)) since f non-decreasing

Therefore, u*(Eq) < a™1(f(b) — f(a)).

: The second claim follows directly from the first one. O

We can not show that monotone functions are differentiable almost ev-
erywhere.

Theorem 56. Suppose I is an open interval and f : I — R is monotone.
Then, f is differentiable a.e..

Proof. Suppose I = (a,b) where —o0 < a < b < o0 and set
E ={z€(a,b) : D(f)(x) > D(f)()}.
For all a, 8 € Q with a > 3, let
Eop={xe(a,b) : D(f)(z) >a>p>D(f)()}
Therefore, B = |J, 3 Fa,s-

Claim 1: p*(Eqg) = 0.

Proof Claim 1: Let a, 8 € Q with 8 > « and take € > 0.
Let O be an open set so that u(0) < p*(Eapg) + €. We then se F be
the collection of closed, bounded intervals [c,d] contained in O for which

f(d) = f(e) < B(d —c).
F=A{le,d] : [e,d] < O and f(d)— f(c) < B(d—c)}.
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As in the proof of the previous lemma (Lemma , F is a Vitali covering
of E, 5 (since x € E, g implies that D(f)(z) < ).

By the Vitali Covering Lemma, there exist [co,do],. .., [cn,dn] € F so
that ([co,do],- ., [cn,dy]) is pairwise disjoint and

n

W (Eap — | Jlej dj]) < e
7=0

Using Lemma [I7} we also have that
1 (Bap 0 [eg, dj]) < a7 (f(d)) = f(ey)-
Combining both of these, we find that

p*(Bap) < et+a ' Y (f(dy) — f(c;))

J

Since € was arbitrary, this shows that
1 (Bap) < a7 Bu*(Bap)-
However, since o™ 18 < 1 and p*(E,3) < o0,
p* (Ea,p) = 0.
O

Our goal now is is prove the fundamental theorem of calculus for mono-
tonic functions. However, before we do so we need to provide two more
definitions and prove a small proposition.

Definition 40. Suppose f : [a,b] — R is integrable.
1. When h > 0 and x € [a,b], let

it (f)(a) = LE =)

We call Diff,(f) a divided difference function.
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2. When h > 0 and x € [a,b], let

@ =y | 1 an

We call Avy,(f) an average value function.
: In (a) and (b) we take f(b+ h) to be f(b).

Proposition 57. Suppose f : [a,b] — R is integrable. Then,

| Ditta(r)dis = Ava) = Ava ).

whenever a <u<v<bandh>0.

[ oty }ILfoJrhdu() vadu]-

u

To see this, note that

Proof.

[ sesmae =" san

u+h

Then note that

jum - Lv - jwh i J~u+h fan

u+h v u

To see this, note that there are two separate cases, where u + h < v and
where v < u + h. Combining these factos together, we find that

| Dt (1) du = Avi(7)(0) = Avi( ).
O

Finally, over 80 pages (and over 3000 lines of IXTEX) in, we can (almost)
prove the fundamental theorem of calculus (for monotonic functions).

Proposition 58. Suppose f : [a,b] — R is non-decreasing. Then, f’ is
integrable and

b
f f du < f(b) — f(a).
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Proof. From our previous work, we immediately see the following.

1. f is measurable (applying Theorem |55/ since f is monotonic).
2. f is differentiable a.e. (applying Theorem .

3. f/ = 0. Since f is non-decreasing.
§2f dp < liminf,[Avyn (£)(b) — Avyn(f)(a)].
Proof Claim 1: We first note that

f' = lim Diffy_n(f).

n—aoo
By Fatou’s Lemma and Proposition

b b
f fdp < limian Diffy—n(f) dp

n a

= liminf[Ave ()(0) ~ Avyn(f)(a)]
Claim 2: Avy - (f)(5) — Avyon (£)(a) < £(b) — f(a).

By definition
b2
A (NG =2 [ F dp =200+ =) = 1)
And, since f is non-decreasing,
a+27"

Aepe(Dla) =2 [ f du=2'1(@2 " = fla)

a

O]

Note that the inequality in this proposition can be strict. For instance,
if ¢ is the Cantor-Lebesgue function, then

1
L ¢ du =0 < o(1) — 4(0).
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5.2 Functions of bounded variation

In order to take what we have done for monotonic functions and apply it
more generally, we first need to discuss the notion of variation for a function.

Definition 41. Suppose f : [a,b] — R.

1. If P = (xo,...,xy) is a partition of [a,b], then we define

V(f,P) = D 1f(wj41) — f(z5)].

j<n
V(f, P) is called the variation of f with respect to P.

2. The total variation of f is

TV (f) = Sup V(f,P).

3. f has bounded variation if TV (f) < o0.

ATCN

t —t |

+ |+

V(5,P)=

+|4

We can give some examples and non-examples.
Example. 1. If f is non-decreasing, then TV (f) = f(b) — f(a).

2. Lipschitz functions have bounded variation. More precisely, suppose
there is a positive real M so that |f(z) — f(y)| < M|x — y| whenever
x,y € [a,b]. Then, TV (f) < .

Non-Example. When 0 < x < 1, let
rcos(Z) x#0

ﬂx)z{ 0 =0
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For each n € N, let

1 1 11
P, =(0 R |
n (7n+17n7 73>27)
Then,
n+11
V(fP)=1+2) -
.:2]
J
So, TV (f) = .

The main result about functions with bounded variation that we will use
is that they can be written as the difference of two monotonic functions.

Theorem 59. f : [a,b] — R has bounded variation if and only if it can be
expressed as a difference of non-decreasing functions.

We will skip the proof in class, but for completeness I will include the
proof in the notes.

Proof. To prove this, we start by defining the total variation function x —
A% ( f[aw]), which is defined to be the total variation of f restricted to the
interval [a,z]. We can immediately see several properties of this function.

1. If a <z < b, then

TV () =TV (fliam) + TV (flz0)-

(You should convince yourself why this is the case. As a hint, try
refining all the partitions with  and see what happens.)

2. Rearranging this equation, we find that
TV (f[a,v]) -TV (f[a’u]) =TV (f[u,v]) >0 foralla <u<wv<b,
so the total variation function is increasing.

3. Furthermore, for a < u < v < b, we have

f(u)—f(v) < ]f(v)—f(u)\ =V (f[u,’v]7 P) <TV (f[u,v]) =TV (f[a,v])_TV (f[a,u])

which implies that
f($) + TV (f[a,a:])

is also an increasing function.
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Thus, we can write

f(IL’) = (f(IL‘) + Tv(f‘[a,x])) - Tv<f|[a,x]>

as the difference of two increasing functions.
To prove the converse direction, it suffices to note that if f = g — h for
non-decreasing functions g and h, then for any partition P of [a, b]

V(f,P) < (g(b) = g(a)) + (h(b) — h(a)),
which immediately implies that f has bounded total variation. O

Corollary 16. Every function of bounded variation is differentiable almost
everywhere.

5.3 Absolutely continuous functions

At this point, we have proven the fundamental inequality of calculus for a
wide class of functions, which are those of bounded variation. However, we
have also seen that this inequality need not be an inequality and so it is
natural to ask the following question:

“When does the fundamental theorem of calculus hold?”

It turns out that in order to answer this question, we need to define the
notion of absolute continuity.

Definition 42. Suppose f : [a,b] — R. f is absolutely continuous if for
every € > 0 there is a § > 0 so that

DU fys) = fl)] < e

j<n
whenever (xo,yo), - .-, (Tn,yn) are disjoint subintervals of [a,b] so that
Z (yj —xj) <9
j<n

In essence, absolute continuity is a stronger form of uniform continuity
where you also require the total change in a function to be small when you
take the union of many small intervals (whose total size is less than §). The
main result of this section is the following.

Theorem 60. Suppose f : [a,b] — R is absolutely continuous. Then:
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1. f is differentiable a.e.
2. f' is integrable.
3. S[a,b] fldp = f(b) — f(a).

However, before we prove this, let us first discuss absolute continuity in
a bit more detail.

Example. Fvery Lipschitz continuous function is absolutely continuous.
Non-Example. The Cantor-Lebesgue function is not absolutely continuous.

Proof. Consider all intervals of the form
(0.apa1 - ..an,0.a9...a,1) (base 3)

where ag, ..., a, € {0,2}.

The length of each such interval is 1/3""2 and there are 2"*! such in-
tervals, so the sum of their lengths is 2"*!/3"*2 which — 0 as n — o0.
Furthermore, they are non-overlapping.

On the other hand, the change in ¢ across each such interval is ¢(0.ag . . . ap1)—
#(0.ap . ..ap) = 1/2"*2. So the sum of all these changes in ¢ is 1/2! There-
fore, ¢ is not absolutely continuous. O

Not all functions with bounded variation are absolutely continuous, but
all absolutely continuous functions have bounded variation.

Theorem 61. 1. Every absolutely continuous function has bounded vari-
ation.

2. In particular, every absolutely continuous function can be expressed as
the difference of two non-decreasing absolutely continuous functions.

Proof. For the first statement, suppose f : [a,b] — R is absolutely continu-
ous. Then, there is a 6 > 0 so that if (x0,%0), .., (Zn,yn) are subintervals
of [a, b] such that

1.
Z (yj —zj) <9, and

j<n

2. such that (x;,y;) N (2, yr) = J whenever j # k,
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then we have that

Choose m € N so that (b —a)27™ < ¢.

We now claim that if P is any partition of [a, b], then V(f, P) < 2™. To
show this, let P be a partition of [a,b]. Let ) denote the uniform partition
of [a,b] of width (b — a)2™™. Let Iy,...,Iom_1 denote the subintervals of
Q. Let P = Pu Q. Then, V(f,P) < V(f,P'). By the choice of m,d,
V(f,P' n1I;) <1 for each j. Thus,

V(f£,P)= > V(f,P'nI)<2m

gj<2m

Thus, f has bounded variation.
To show the second claim, note that f has bounded variation so we set

gl(x) = f(x) + Tv(f|[a,x])
92(56) = Tv(f|[a,x])

By our previous work, ¢g; and go are non-decreasing.

We now want to show that g; and go are absolutely continuous. It suffices
to show that go is absolutely continuous. Let € > 0. Choose § > 0 so that

Z|f (yj) = f(x5)] < €¢/2

j<n

whenever (zg, o), - .., (n,yn) are non-overlapping subintervals of [a, b] so
that the sum of their lengths is smaller than 6.

Now, suppose (o, %0), ---, (Tn,yn) are non-overlapping subintervals of
[a,b] so that the sum of their lengths is smaller than 6. We want to show

that
Z 192(y5) — g2(x;)| < e.

jsn

To do so, we use the fact that

gQ(yj) - gQ(wj> TV(f| [a,y;] ) Tv(f|[a,:rj]> TV(f| [z,y;] )

If P; is a partition of [x},y;] for each j < n, then by the choice of 4,

ZVf, ) <€/2

Jj<n
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So,
DTV (Fliay ) < €/2 <€
j<n

O]

With this fact, we can now establish a lemma that gets us most of the
way to Theorem

Lemma 18. Suppose f : [a,b] — R is absolutely continuous. Then, {Diffo—n (f)}_,
18 uniformly integrable.

Proof. Suppose f is absolutely continuous. Without loss of generality, we
can suppose f is non-decreasing. Let ¢ > 0 and choose § > 0 as in the
definition of absolute continuity for €/2.

Suppose n € N, and set h = 27". Now let F is a measurable subset of
[a,b] so that u(E) < §/2. Then, there is an open set U so that U 2 E
and p(U) < §. There is a pairwise disjoint family of bounded open intervals
{(Cj,dj)}jep so that U = UjeF(Cj’dj)' Then:

| pittn(yan = | Ditta(s)au
E U
- Zf(%d Diffy,(f) dp

jeF 5)
= ;[AVh(dj)—AVh(Cj)]
= 23 [+~ sy + 0t
jer Y0

If F/ € F is finite, then

1 h 1 ("
7 Z JO [f(dj +1) = fle; +1)] du(t) = hL Z |f(dj +1) — flej +t)| du(t)

JEF! jEF’
1 ¢
Thus,
1 h
72 | Uty 0 = ple = 01t < /2 <
jeF
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Using this lemma, we can now prove the main result from this section.

Proof. The first claim follows immediately from the fact that f has bounded
variation.

(2) and (3): By the Lemma, {Diffy—n(f)}y_ is uniformly integrable.
Furthermore,

lim Diffy-n(f) = f’ a.e. by the first claim.

n—0o0
By the Vitali Convergence Theorem, f’ is integrable and

fldp = lim | Diffy-n(f) dp.

[a,b] [a,b]

However,

lim | Diffya(f)dp = lim Avyn(£)(5) ~ Avyn(f)a) = F(5) — f(a).

% Ja]

O]

5.4 Indefinite Integrals and the Fundamental The-
orem of Calculus

We can now use our work to define the notion of the indefinite integral.

Definition 43. Suppose f,g : [a,b] — R. We say that f is the indefinite
integral of g if g is integrable and

for all x € [a,b].

Theorem 62. Suppose f : [a,b] — R. Then, f is absolutely continuous if
and only if f is the indefinite integral of a function on [a,b].

Proof. (=): By Theorem [60]

(«<): Suppose ¢ : [a,b] — R is integrable and



for all z € [a,b]. Let € > 0.
By a homework exercise, there is a § > 0 so that

f gl dp < e
E

whenever F is a measurable subset of [a, b] with u(FE) < §. Suppose
(an yO)a ceey (mna yn)

are non-overlapping subintervals of [a, b] so that the sum of their lengths is

smaller than §. Set
E = Jj,y))-
J

Then:
M) - 1)l = N gdu
j<n j<n |Y1Z5,y;5]
< ZJ 9| dps
j<n VIm5,05]
= f gl dp < e.
E

For monotone functions, we can state this result a bit differently.

Theorem 63. Suppose f : [a,b] — R is monotone. Then, f is absolutely
continuous if and only if

f fdp = f(b) — f(a).
[a,b]

Proof. Before proving this, it is worth noting that f being monotonic implies
that f’ is integrable, which implies that the left hand side is well defined.
The forward direction follows immediately from Theorem

For the converse direction, we suppose, without loss of generality, f is
non-decreasing.

We need to show f is absolutely continuous. To do so, it suffices to show
that f is the indefinite integral of f’. Let = € [a, b]. On the one hand:

T b
SO -sw=] s du=L fdu+Lfdu

[a7b
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But, f(b) — f(a) = f(b) — f(z) + f(z) — f(a). So, we conclude

T b
0= j Fdp— [F@) - Fa)] + j £ dp— [F(b) — ()]

a x

However, since f is non-decreasing, by Proposition

T

fldp < f(z) = f(a)

a

b

flrdn < f(b) = f(x)

xT

Thus, both differences in the above equation are non-positive. So,

j " fdp = (@)~ fla)

O

We are almost ready to prove the second form of the fundamental theo-
rem of calculus. Before doing so, we need a small lemma.

Lemma 19. Suppose f : [a,b] — R is integrable Then, f = 0 a.e. if and

only if
T2
J fdu=0

1

whenever (z1,z2) < [a, b]

Instead of giving a full proof of this, note that the forward direction is
immediate. For the reverse direction, note that it implies that SU fdu=20
for every open set U. Then, we can approximate measurable sets with open

sets to show that
f fdu=20
E

for any measurable set. Then we can take the positive and negative parts
of f and apply Chebychev’s inequality (Theorem .

Theorem 64. Suppose f : [a,b] — R is integrable. Then,

d X
de fdu= f(x) a.e.
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Proof. Set N
F(z) = JO fdu

So, F'is absolutely continuous. Thus, F'is differentiable a.e. When (z¢,z1) S
[a, b], by definition F' and Theorem

rl(F/—f)du=0

o

So by the Lemma, F’ = f a.e.

5.4.1 The Lebesgue Decomposition

Before concluding this chapter, let me make one further remark about func-
tions of bounded variation. This will probably not be meaningful until you
study measure theory in more depth, but it is worth noting now.

Definition 44. Suppose f : [a,b] — R. f is singular if f' =0 a.e.

Given any function of bounded variation, it is possible to decompose it
as a sum of an absolutely continuous function with a singular function.

Theorem 65. Suppose f : [a,b] — R has bounded variation. Then, f can
be written as the sum of an absolutely continuous function and a singular
function. This decomposition is known as the Lebesgue Decomposition.

Proof. Since f has bounded variation, f is differentiable a.e.. Set

o@) = [ au

a

hz) = f(z)—g(@)
Thus, g is absolutely continuous. A’ = 0 a.e. and f = g + h. O

5.5 A brief remark on Radon-Nikodym derivatives

In this course, we will unfortunately not be able to discuss measures other
than the Lebesgue measure. However, the real power of absolute continuity
appears when one considers more general measures, so I felt it was necessary
to include a brief remark about this.

To begin, we start with a definition of absolute continuity, not for func-
tions, but rather for measures.
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Definition 45. A measure u on Borel subsets of the real line is absolutely
continuous with respect to the Lebesgue measure if for every measurable set
E, u(E) = 0 implies v(E) = 0. This is writlen as v < p.

There is a straightforward way to create measures which are Lebesgue
absolutely continuous. To do so, one takes a non-negative measurable func-
tion f: R — R, and defines the measure to be

V(E) = JE fdp.

Example. 1. The uniform measure on [0, 1] is generated by the function
[= X[0,1]
2. The Gaussian measure is generated from the function
f(x) = 1 6_%(%)2,

T oo2n

where . and o are parameters.

It turns out that all measures which are absolutely continuous can be
expressed in this way.

Theorem 66 (Radon-Nikodym Theorem). if v « pu, then there ezists a
p-measurable functz’mﬂ f: R — [0,00), such that for any measurable set
EcR

v(E) = JE fdu.

d
In this case, the function f (also written as d—l/ is said to be the Radon-
1

Nikodym derivative of v with respect to p.

It is natural to ask what the relationship between absolutely continuous
functions and absolutely continuous measures are. In fact, this comes down
to the following simple fact.

Proposition 67. A finite measure v on Borel subsets of the real line is
absolutely continuous with respect to Lebesgue measure if and only if the
point function

F(z) = v(-o0,z])

18 an absolutely continuous real function.

!More precisely, a function which is measurable with respect to the associated o-
algebra.
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Note that if v has total mass one, then F is simply the cumulative
distribution function. Also note that if you assume Proposition then
proving Theorem is essentially just a matter of appealing to Theorem
so you can intuitively think about the latter result as being a Radon-
Nikodym theorem in disguise.

5.5.1 An even briefer remark on the Lebesgue Decomposi-
tion theorem

The motivation for Theorem [65| might seem somewhat mysterious. In fact,
this theorem is a special case of a better known theorem for measures, which
is the following.

Theorem 68. Let i and v be o-finite measures on a measurable space
(Q,F). Then v can be uniquely decomposed into v = v, + vs where v, <
and vs L .

Here, the notation vs 1 p means that v, is singular with respect to pu.

Definition 46. A measure vy is singular with respect to u if it is possible to
decompose F into two disjoint subsets £, and £, so that for any set A€ &,
p(A) =0 and for any B € &, vy(B) = 0.

Out of context (and with some of the terms as yet undefined), this result
might just be word salad. However, this result, when combined with the
Radon-Nikodym theorem, give a good way to understand the relationship
between arbitrary measures on reasonable measure spaces.

99



Chapter 6

Convex functions

We now turn our attention to the notion of convexity.
Definition 47. Suppose f : (a,b) - R where —o0 < a < b < .
1. f is convex if
fzr+ (L= Az2) < Af(z1) + (1= A)f(22)
whenever a < x1,x0 <b and 0 < A < 1.
2. f is strictly convex if
fQzr+ (1= Nzz) < Af(z1) + (1= A)f(22)
whenever a < x1,x2 < b and 0 < X < 1.

3. A function is strongly convex if
flz+ (1 —t)y) <tf(x)+ A —-1)f(y) - %mt(l —t)(z —y)*.

In other words, convex functions are those which lie below their secant
lines, strictly convex functions are those which lie strictly below their secant
lines and strongly convex functions lie below a quadratic function
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£56Y + (0-030)

£50) + (1-030) -4t 1-0 62

a b

Definition 48. A function f is concave (respectively, strictly, strongly) if
—f is convex (strictly convex, strongly convex).

There are several examples of convex functions which should be familiar.

1. When p > 0, x — 2P strictly convex if p > 1, strictly concave if p < 1.
2. The exponential function is strictly convex.

We can now show an alternative characterization of convexity in terms
of increasing difference quotients.

Proposition 69. f: (a,b) — R is conver if and only if
f(@) = f(z1) _ fla2) = f(2)

<
Tr — T xro — &

whenever a < x1 < x < 19 < b.

Proof. (=): Suppose f is convex. Suppose a < 1 < ¢ < x2 < b. Then,
there exists 0 < A < 1 so that x = Az1 + (1 — A)xy. Thus,

f(x) — f(x1) < A(x1) + (1= A) f(z2) — f(21)

X

T — T Az + (1= N)zg — a1
f(@2) — fz1)
N Tro9 — 1

Similarly:
’ Fles) = fle) _ fles) — fla)

~
ro — I Tro — T
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(«<): Suppose

f(x) — f(x1) < f(z2) — f(2)

Tr — T = xro — &
whenever ¢ < 1 < T < x9 < b. Suppose 0 < A < 1. We can assume
0 <A<l Setz=Az1+ (1— Nz It follows that

To — T

A=
T2 — I

and that
|

i) —1‘1'
Since 0 < A < 1, 1 < x < x9. Thus,

f@) = fo) _ f(ws) = fl@)

~
xr — X Xro — T

Therefore

To— X T —

(f(x) = fz1)) <

T2 — X T2 — X1

(F(2) — F(2))
B AF () — F(z1) < (1— N (f(x2) — f(x):

Which rearranges to f(z) < Af(z1) + (1 — X) f(x2).
O

6.1 The derivatives and sub-derivatives of convex
functions

One nice property of convex functions is that their derivatives satisfy several
nice properties. In order to discuss this, we first define the notion of the left
and right derivative.

Definition 49. Suppose f : (a,b) — R. Suppose a < xg < b.

1. 0_(f)(wo) = limy, o Lot =S (z0),
0_(f) is called the left hand derivative of f.

(
2. 04 (f)(wo) = limy, g Lot =I(ro)
0+ (f) is called the right hand derivative of f.
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The reason to define these two derivatives is that they are always well
defined and increasing for convex functions.

Proposition 70. Suppose f is convezx on (a,b). Then,
1. f has left and right hand derivatives at each point in (a,b).

2. Ifa<u<wv<b, then

0—(f)(w) < 04 (f)(w)

n
N
i
=
=
N
D
+

=
S

v—u
Proof. (1) : Suppose x1 > u. By Proposition

f(x1) = f(u)

r1T —Uu

decreases as 1 — u. On the other hand, if a < ¢ < u, by Proposition [69]

agaln, flw) = f(e) _ flx1)— f(u)

<
u—c T —u

whenever z1 > u. Thus, 04 (f)(u) exists. Similarly, 0_(f)(u) exists.

(2): Proof of (1) shows that 0_(f) < 04+(f). Suppose u < 1 < v. By

Proposition
’ flu) — f(e) _ f) ~ ()

~
U — T v—u

Now, let 21 — u™. We obtain

04wy < T2 T
We similarly show that
f(’l)) — f(u) < 6_(f)(1})

O]

This result has several important corollaries. For instance, it shows that
convex functions are Lipschitz.

Corollary 17. If f is convex on I, and if [a,b] < I, then f is Lipschitz on
[a,b].
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Proof. By the Proposition, if a < x <y < b,
fy) — f(=)
y—z
Set M = max{|0: (/)(@)], [o-(f)(®)[}. Then, |f(z) - f(y)| < Mlz —y|. ©

0. (f)(a) < < o).

Theorem 71. Suppose f is convex on I. Then
1. f is differentiable except at countably many points of I, and
2. f' is non-decreasing.

Proof. By Proposition[70] 0_(f) and 0. (f) are non-decreasing. and 0_(f) <
0+(f), where the inequality is strict only at the points at which f’ does not
exist. As such, these points are in one-to-one correspondence with a pairwise
disjoint family of open intervals. When f’(zg) exists, f'(zo) = 0+ (f)(z0).
So, f is non-decreasing. O

This has the following corollary.

Corollary 18 (Alexandrov’s theorem). Suppose f is convexr on I. Then f
1s twice differentiable almost everywhere.

In the proof of Theorem 71} the subdifferential played an important role,
so we will investigate it further now.

Definition 50. The set of(x) = [0-f(x),0+f(x)] is known as the sub-
differential of f at x.

The sub-differential plays a crucial role in the analysis of convex func-
tions. The standard definition of the sub-differential is the following.

of(x)= [ (vl f(z)=f@)+v-(z—a)}

zedom f

Note that by considering v as a vector in Euclidean space, the sub-
differential is well defined for functions f : R™ — R. It turns out that the
sub-differential is always a closed and convex set. This is obvious for convex
functions in R, but holds true more generally as well.
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6.2 Jensen’s inequality

In this course, and on the qualifying exams, one of the best tools that you
have involving convex functions is Jensen’s inequality. As such, we will
spend some time discussing it now.

To begin, we note that convex functions lie above their tangent lines
(where tangent is defined to be any point in the sub-differential).

Lemma 20. Suppose f is convexr on (a,b) and that a < x9 < b. If

0—(f)(xo) < m < 01(f)(x0), then f(x) = m(x —zo) + f(zo).

Using this, we can now state and prove Jensen’s inequality.

Theorem 72. (Jensen’s Theorem): If ¢ is a convex function on R, and if
f, ¢ o f integrable on E where u(E) =1, then

()< oo

Proof. Set oo = . fdu. Suppose 0_(¢)(a) < m < 04(f)(a). By Lemma

20}
o(f(x)) =2 m(f(x) — a) + d(a).

Now, take the integral of both sides. O

Example: If f:[0,1] — R is integrable, then

(Lro'<[ o

Question 2 (2011 Analysis Qualifying Exam, Problem 3). Let f : [0,1] —
R be continuous with f(x) > 0 for x € [0,1]. Show that

exp (Jol log f) < Jol f

6.3 A brief remark on convex duality

Any discussion of convex functions would be incomplete without some men-
tion of convex duality. One of the fundamental properties of convex functions
is that they come in pairs.
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Definition 51 (Legendre transform). Let I < R be an interval, and f : I —
R a function. The Legendre transform of f (denoted f*) is the function
f*:I* > R defined by

f*(z*) = sup (z*z — f(x)), 2z*el*

xel

where the domain I* is defined to be
I* = {x* eR:sup (z¥z — f(z)) < OO}
zel

Proposition 73. The Legendre transform of any function is a convex func-
tion.

Proof. Let p and ¢ be two points in the domain I* where f* is defined and
let ¢ be within [0, 1]. Then,

f*(tp+ (1 —1)q)

sup {a[tp + (1= 1)) — f ()}

sup {t [zp — f(2)] + (1 = 1) [zq — f(2)]}
tsup fzpy — f(x)} + (1 = 1) sup {zg — f(2)}
tf* )+ A=) f" (a).

N

O]

For convex functions, it turns out that this transformation is involutive.
We will not prove this here because I was not able to find a good proof using
only what we’ve covered thus far.

Proposition 74. A function is convex iff f** = f.

There is a lot more that can be said about the Legendre transform.
For instance, there is a deep relationship between the sub-gradients of the
Legendre pair.

Furthermore, this duality appears throughout mathematics. To give a
short and very incomplete list, the it shows up in

1. Mathematical Physics (Classical mechanics, thermodynamics ... )
2. Optimal transport (see Chapter 5 of [Vil09])

3. Mirror symmetry (in particular, T-duality [Leu05]).
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Chapter 7

Basics of functional analysis

In analysis, we will often want to establish quantitative control over our
functions. For instance, if we are studying a surface of the ocean, we want
to understand how large the waves are and how smooth or rough the chop
is. In order to do that, it is necessary to develop a more complete theory of
how to bound functions. In this chapter, we cover some preliminary ideas
in this direction, which lay the groundwork for modern functional analysis.

7.1 Normed linear spaces and Banach spaces

Definition 52. Suppose V' is a vector space over R. A norm on V is a
function | -|| : V' — [0,0) so that

o |av| = |a||jv| for all « € R and all v e V. (Homogeneity)

o ForallveV, if |v]| =0, then v = 0. (Positivity)

o For allu,veV, |u+v| < |u| + |v|. (The triangle inequality)

Definition 53. A normed linear space consists of a vector space together
with a norm.

Example. 1. R™ with its usual norm is a normed linear space.
2. Let C[0,1] denote the space of all continuous functions
f:[0,1] > R.

C[0,1] is a vector space under the usual pointwise addition and scalar
multiplication. For each f € C[0,1], we let

[ flsup = max{|f ()] : ¢ e [0,1]}.
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It follows that | f|sup is a norm on C[0,1].

3. Integrable functions with the norm

£l = f fldp.

The reason for the “1” in the subscript of the previous norm will soon
become clear. The examples that we will be interested in are mostly function
spaces such as the latter two spaces, as much of what will say is trivial for
finite dimensional spaces.

The main reason to study normed linear spaces is that they induce a
notion of convergence.

Definition 54. Suppose V' is a normed linear space, and suppose {vyn}_
is a sequence of vectors.

1. We say that {v,},"_, converges in V (or converges in norm) if there is
a vector v e V so that lim,_, |v, — v| = 0.

2. We say that {v,}°_, is Cauchy if for every ¢ > 0 there is an N € N
so that ||vy, — vy | < € whenever m,n = N.

In this class we will not cover notions of convergence other than conver-
gence in norm, but you may well do so in future classes so we will use the
correct terminology from the start.

There is a relationship between convergent sequences and Cauchy se-
quences, which should hopefully be familiar from a previous course in anal-
ysis.

Proposition 75. Suppose V is a normed linear space, and suppose {v,}_
s a sequence of vectors in V

1. If {vp}2y converges in V', then there is exactly one vector v in 'V so
that limy, o [|v, — v| = 0; denote this vector by lim,_,q vy,.

2. If {vn}oy_y converges in V, then it is Cauchy.

3. Suppose {vn}°_ is Cauchy. If a subsequence of {vn}°_, converges in
V, then {v,}_, converges in V.

Definition 55. A normed linear space is complete if all of its Cauchy se-
quences converge; in this case we say that it is a Banach space.

Example. C[0, 1] with the supremum norm is a Banach space.
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Exercise 16. Show this fact. Hint: Use uniform convergence.

Non-Example. C[0,1] with the norm

£l = wff? dy

s an incomplete normed linear space.
Exercise 17. Find a Cauchy sequence in this space which does not converge.

Before moving on, let us mention two lemmas which will be useful some
future considerations.

Lemma 21. Suppose V is a normed linear space, and suppose {vn}X_
is a Cauchy sequence of vectors in V. Suppose {aj};?ozo s a sequence of
positive reals that converges to 0. Then, there exist ng < ny < ... so that
1Vny; — Vng, 1 || < aj for all j € N.

The proof is left as a small exercise.

Lemma 22. Suppose {v,}_ is a convergent sequence of vectors in a
normed linear space V' and that v denotes its limit. Then, lim,_,o |v,| =
[v]-

Proof sketch: Observe that

ol = o]l < on = o]

7.2 L? spaces
Definition 56. Suppose E is a measurable set of reals. Suppose 1 < p < c0.

1. LP(E) consists of all measurable f : E — [—o0,00] so that
| 111 du <o
E

2. When f e LP(E), let

1/p
17l = (fE P du)
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Before moving on, we make a few remarks. First, note that L'(E) con-
sists of all integrable functions on E.

Furthermore, when f,g € LP(F) and f = g a.e., we identify f and g.
As such, LP spaces are really equivalence classes of functions rather than
functions.

There is also an L®-norm. However, in order to define it, we need to
define some more terminology

Definition 57. Suppose S < R.

1. M € (—o0,00] is an essential upper bound on S if M > a for almost
alla e S.

2. The essential supremum of S is the greatest lower bound of the set of
all essential upper bounds of S.

Exercise 18. To make sense of this defintion, consider the following space
[0,1) U {3,4,5}.
What is its essential supremum?
With this definition, we can define the L® norm.
Definition 58. Suppose E is a measurable set of reals.

1. L*(E) consists of all measurable f : E — [—00, 0] so that the essential
supremum of ran(| f|) is finite.

2. When fe L*(E), let ||f|x denote the essential supremum of f.

The relationship between LP functions and L™ ones can be a bit subtle.
Here is an exercise to help think about it.

Exercise 19. Suppose f is measurable and satisfies

1
jo exp(|(x)])d < o0

Prove that f € LP([0,1]) for all 1 < p < 0. Is it true that such an f must
necessarily belong to L*([0,1])?
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7.3 Conjugate exponents and some fundamental
inequalities

One of the most important features of the LP-spaces is that they come in
conjugate pairs and satisfy several fundamental inequalities.

Definition 59. Suppose 1 < p,q < 0. We say that p,q are conjugate if
1,1

=4 = =1.

p g

Example. 1. 1 and c© are conjugate.
2. 2 and 2 are conjugate.
3. 3 and % are conjugate.

Using some algebra, we can observe two basic, but very important ob-
servations

Observation 6. 1. If q,p € R are conjugate then ¢ = p/(p — 1).

2. If p,q are conjugate, and if p > 2, then 1 < q < 2.

7.3.1 Young’s inequality and the Peter-Paul version
Theorem 76 (Young’s Inequality). If p,q are conjugate then

a? b
ab< —+ —
p q

for all reals a,b = 0.

Proof. Without loss of generality, we can consider a, b # 0. Set: s; = pln(a)
and s = ¢In(b). Since exp is convex,

em/p-i—sz/q < 16514-1652

p q
1 1
= —a’ + -b!
b q
But, ab = es1/P+s2/a, O

Oftentimes in analysis, it will be useful to use a slightly different version
of this inequality, which is known as the Peter-Paul inequality. The basic
idea is that you “rob Peter in order to pay Paul”’. In other words, you gain
tighter control of the second term at the expense at the cost of losing some
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control of the first term. For the case p = ¢ = 2, this inequality is the
following.

a £b?
9% + - (7.1)

7.3.2 Holder’s Inequality

Theorem 77. (Hélder’s inequality): Suppose E is a measurable set of reals.
Suppose p,q are conjugate, f € LP(E), and g € LY(E). Then, fg € L'(E)
and

Ifgle < 1flplglq

Proof. We assume that 0 < | f]p, | f|q, or else the proof is trivial.

Case 1: If one of p, g is infinite, then the inequality holds directly from
the monotonicity of the integral.

Case 2: p,q < o0.

Claim 1: , .
71 Jol _ 1177, 1l

1flplgle ~ 2IfIE  algld
Proof Claim 1: By Young’s Inequality.

Claim 2:
[fllal

e 1 flblgle ~
Proof Claim 2: By Claim 1,

Ll gl 1f LfIP f 1 [g|?
—————dy < - | “Smdu+ | ——sdu
fE 1F1p lgllq pJelflp e 4qlgl
1 1
- Z4+-=1
b q
PClaim 2

The theorem now follows directly from Claim 2.
O

Holder’s inequality is saturated in by the conjugate function, which is
the following.
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Proposition 78. If f is not identically 0, the function f HfH P.sgn(f)
|fIP~1 belongs to LI(X, i) and satisfies

JﬂF=UMMMﬁq=
FE

Here, sgn(f) is the function which is 1 whenever f is non-negative and —1
whenever f is negative so that sgn(f) - f =|f] a.e.

This is a favorite topic of the people who write the qualifying exam.

Exercise 20 (Fall 2021 Qual: Problem 4). Let f € LP(R), | f|, # 0. Prove
that there exists a g € LY(R) such that |g|, = 1 and

ff w)dz = 2| fl

The case of Holder’s inequality with p = ¢ = 2 is of particular impor-
tance, and is better known as the Cauchy-Schwarz inequality.

Corollary 19 (Cauchy-Schwarz inequality). If E is a measurable set of
reals, and if f,g € L*(E), then | fg|1 <[ f]2lgl.
7.3.3 Minkowski’s inequality

Theorem 79. Suppose E is a measurable set of reals, 1 < p < o, and
f,ge LP(E). Then,

If+ gl < 1F1p + lgl

Proof. WLOG p < c0. Let g be conjugate of p.

Claim 1: (f + g)? = f(f + 9)P? + g(f + g)P/9.

To see this, note that since p, ¢ are conjugate, p — 1 = g. So

(f+9P = f(F+9"  +g(f+9P "
= f(f+ 9" +g(f + 9"

Claim 2:
I+ glB < 1f + gl”9ql £lp + Iglp)-

Proof Claim 2: By Claim 1 and the triangle inequality,

|+ glP < IFIf+glPe + gllf + gl
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Thus,
f \f+g|”du<f IFIIf + glP/?+ duf gl f + gP/? dp
E E E

Note that | f+g|P/9 € LY(E). So, by Holder’s Inequality, | f||f +g["/? € L'(E)
and |g||f + g|P/? € L'(F) and

fE FILf + 9P/ dp + L gllf + gl du = IFILF+ glP e+ gl f + 9P

< S5 + aP’?lq + lglpI1F + g7/l

Finally, we can show the desired inequality.

1f+ gllp < 1Flp + llgllp-
To see this, note that by Claim 2,

If +glBllf + gl U7t < £y + gl
But,

1-1/q
IF + gl + glPia) ! = (fE<f g du> —1f + gl
]

This has the following important corollary, which is that LP spaces form
a normed linear space.

Corollary 20. If E is a measurable set of reals, and if 1 < p < o0, then
LP(E) is a normed linear space.

Before moving on, it is worthwhile to write out some functions which are
in various LP-spaces.

Example. 1. Set E = (0,1]. Suppose 1 < p1 < pa < 0. Choose a so
that —1/p1 < a < —1/py. Set f(z) = x® when 0 < z < 1. It follows
that f € LP2(E) — L (E).

2. Set E = (0,00). For all x > 0, let
—1/2
U 1+ In(x)

It follows that f € LP(E) iff p = 2. Proof sketch: use change of
variables u = 1+ 1n(z). When p > 2, S;O |f(z)[Pdx = c0. Whenp < 2,
§o | f(z)[Pdz = oo.
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7.3.4 Embeddings of LP-spaces

Theorem 80. Suppose u(E) < o and 1 < py < p2 < 0. Then, LP2(E) <
LPY(E).

Proof. Set p = py/p1 > 1. Let f € LP2(E). Thus, |f|"* € LP(E). Set ¢ = =1
so that p, ¢ are conjugate. Set g = xp. Since u(E) < w0, g € L1(E). So,

f|f|mdu _ f|f|p1gdu

E E

AP Lol

| B u(E) < oo.

N

Thus, f e LP1(E).

7.3.4.1 Interpolation of L? spaces

On R, none of the LP spaces are subspaces of others. However, there is a
foundational result which states that if f € LP° n LP! for py < p1, it is also
in LY for all ¢ with pg < ¢ < p1 and we can estimate the L? norm in terms
of the LPo- and LP!'-norms.

To explain this result, we first introduce some notation.

Definition 60. Let pg,p1 be two numbers such that 0 < pg < p1 < 0. Then
for 0 < 0 <1 define py by: % = 11);09_,_1%.

Theorem 81. Fach f € LPo n LP' satisfies:

1 1ps < 1£llpg *1f 15, -
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Proof. Consider |f| = |f|?|f|'~% and apply Holder’s inequality:

Jis = [ (o)™ (72)

o i (7.3)
Opg (1-0)pyg
2N Sy BN\ T
< ([ ey )™ (] (oom) =) 7
Opg (1—6)pgy
= (Jur) ™ (Jrem) (75)
Opg (1-0)pg
= (Jur) ™ (o) (76)
0 -0
=[£I £t 0o (7.7)
Then take the pg-th roots of both sides. O

7.4 LP and pointwise convergence

We can now discuss the relationship between convergence in LP and usual
pointwise convergence of functions.

Theorem 82. Suppose 1 < p < o0 and E is a measurable set of reals. Then,
every Cauchy sequence of vectors in LP(E) has a subsequence that converges
pointwise almost everywhere.

Proof. Suppose {fn}_, is a Cauchy sequence of vectors in LP(E). By
Lemma there is a sequence ng < n1 < ... so that |fn;, — fn, b <27%
for all j.

For each j € N, let

Ej = {ZE ek : |fng (.73) - fnj+1(x)|p > 27]'}'

Claim 1: lim; f,, (z) exists if z € Ej; for only finitely many j.

Proof Claim 1: Suppose x € Ej for only finitely many j. Let ¢ > 0.
Choose k so that x ¢ Ej; for all j > k and 27K+l < €. Suppose jo,j1 = k
and j; > jo. Then, by the triangle inequality

L =
’fny(x) _fnj+1(w)| < Z 2%
J=jo
9o+l < o7kt ¢
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Figure 7.1: A sequence converging in LP but which does not converge point-
wise and a pointwise convergent subsequence.

Claim 2: For almost every x € F, x € IJ; for only finitely many j.

Proof Claim 2: By Chebychev,
BB <2 [ 1= Fupr P de <27,
So > u(Ej) < 0. By Borel-Cantelli, Claim 2 follows.

O]

Note that the passing to a subsequence might be necessary. It is possible
to find sequences which converge to zero in P but do not converge pointwise.
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Similarly, it is possible to construct families of functions which converge
pointwise but do not converge in LP.

Example 2. L frn = Xmnn+1]
2 =10,

Lemma 23. Suppose E is a measurable set of reals. Suppose 1 < p < o0.
Suppose Yo || fulp < 00. Then:

1. 27010:0 fn converges almost everywhere.

2. If f= Z%o In, then f e LP(E) and limp, o0 | f — 2o fulp = 0 and
[£lp < 2n=o [fnllp-

Proof. : Suppose f = Y>> fn. Set:

m

9m = Z‘fn’
n=0

g = lim gp
m—00

Claim 1: g € LP(E) and limy, e [|gm — g]p = 0.
By definition, |gm|P < |gm+1|P. So, by MCT

lim f Igml”du=f |g|” dp.
m—00 E E

i.e.
Jim [ lgaly = ol
But,
m
Igmllp < X 1 fnlp-
n=0
Thus, |g], < oo since 35, | fullp-
If m e N, then
m+k
o=t} = | jim | 3515 " an
m+k
Y Y (MCT
dm | Z [ful| dp (MCT)
m+k

= i p
Jim | n;m Fally
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So,

m+k
lg = gmlpy = lim | > 1 falllp
—0
n=m
m-+k

N

Lm0 falp
n=m

= > Ifally-

Since Y, o [ fullp < o0, it follows that limy, o |9 — gmlp = 0. 5C10m 1
Claim 2: Y., f, converges a.e..

Proof Claim 2: Since g € LP(F), g(xz) < o a.e.. Let x € E so that
g(z) < oo. When k,m € N and m > 0,

m+k

< 9(x) — gm-1(x)

It follows that the partial sums of Y, , fn(z) form a Cauchy sequence.
Thus, Zf:o Jn converges almost everywhere. o¢aim 2-

Set f =3,
Claim 3: f e LP(E).
Proof Claim 3: |f|? < [g|P by definition. Apply Claim 2. o, 3-
Claim 4: limy,—o0 [ f — D0 g fullp = 0.
Proof Claim 4: Again, by MCT we have that

m

1f =] fallo < 9 = gmllp-
n=0
Apply Claim 2. 04im 4

Claim 5: [ flp < Xz |fullp-

Proof Claim 5: By Claim 4 and Lemma O
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Theorem 83. LP(E) a Banach space

Proof. Suppose {fn},_ is a Cauchy sequence in LP(E). Choose a sequence
no <mni <...sothat | fn, ., — fo;lp <277. Set f = fn, +Zﬁ0fnj+1 — [y
By Lemma23] f € LP(E) and limy, o Hf—(fno +20000 fni)llp =.O. However,
f=(fro+ 22520 ;) = f— foypr- Thuslimjoo | f = fo, [lp = 0. Since {fn};,
is a Cauchy sequence, lim,,_,o || fn — f[p, = 0 (see Proposition . O

7.5 Approximations and Separability

One major strategy in analysis is to try to approximate functions of one
class by those with better properties. This is a version of Littlewood’s
second principle, but it has many applications (e.g., the continuity method,
using test functions to define distributions, etc.). Here, we are able to make
this idea precise, using the notion of dense subsets.

Definition 61. Let X be a normed linear space with norm | -|. Given two
subsets F and G of X with F € G, we say that F is dense in G, provided
for each function g in G and € > 0, there is a function f in F for which

If =gl <e

Example 3. 1. The rational numbers Q are dense in the real numbers
R.

2. Weierstrauss’ theorem shows that the space of polynomials is dense
inside Cla,b] for any bounded interval.

There is an important principle, which is often useful:

Observation 7. If F is dense in G and G is dense in ‘H, then F is dense
m H.

Proposition 84. Let E be a measurable set and 1 < p < . Then the
subspace of simple functions in LP(E) is dense in LP(E).

Proof. Suppose that g € LP(E). First consider the case p = 0. There is a
subset Ey of E of measure zero for which ¢ is bounded on E ~ Ey. From the
Simple Approximation Lemma, we find that there is a sequence of simple
functions on £ ~ Ejy that converge uniformly on E ~ Ey to g. Therefore,
these functions converge with respect to the L*(F) norm. Thus the simple
functions are dense in L*(E).
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Now suppose 1 < p < o0. The function g is measurable and therefore,
by the Simple Approximation Theorem, there is a sequence {¢,} of simple
functions on E such that {¢,} — ¢ pointwise on E and

lon| < |g| on E for all n.

By comparison, we see that ¢, € LP(E) for all n. Claim 1: {¢,} — ¢ in
LP(E). Proof of claim 1: For all n

on — gP < 27 {|pnl? + [g|P} < 2°7|gP on E.

Since |g|P is integrable over E, we infer from the Lebesgue Dominated Con-
vergence Theorem that {p,} — g in LP(E). O

Proposition 85. Let [a,b] be a closed, bounded interval and 1 < p < o0.
Then the subspace of step functions on [a,b| is dense in LP|a,b].

The proof of this is essentially the same as the proof of Proposition
so we will omit the proof.

Definition 62. A topological space is separable if it admits a dense count-
able subset.

Example 4. The real numbers are separable (which is something you are
probably tired of hearing by this point in the course).

Proposition 86. Let E be a measurable subset. The space LP(E) is sepa-
rable for 1 < p < o

Proof. (Sketch) On the interval [—n,n], consider the space JF,, of step func-
tions which take rational values and whose jumps occur at rational numbers
and which are defined to be identically zero outside this interval. We con-

sider the union
F=JFn
n

By our previous work, F is a countable collection of functions that is
dense in LP(R). Finally, let E be a general measurable set. Then the
restrictions of functions in F to E is a countable dense subset of LP(E). O

Corollary 21. C.(E) is dense in LP(E)

On the other hand L*(R) is not separable (see the book for details.)
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7.6 The duality of L”

We have already seen that the conjugate exponents appear in pairs. In this
section, we will discuss this duality in a little more depth. We start with
some definitions.

7.6.1 Bounded and continuous functionals

Definition 63. Suppose V' is a vector space. A linear functional on 'V is a
map T : V — R such that for all g,h eV, a, 3 € R,

T(ag + Bh) = oT(g) + BT (h).

Note that the collection of linear functionals on V' is itself a vector space.
We can give a few examples.

Example 5. 1. If V = R", the space of linear functionals is simply the
space of linear functions.

2. Suppose E is measurable, 1 < p < o0 and 1% + % = 1. For g € LY(E),
we define the functional T : LP(E) — R by

T(f) = fE fgdu

for f € LP(E). Using Holder’s inequality, we know that |Tf| <
1fIplgllq: so T(f) is well defined.

For normed spaces, we can also discuss the notion of a bounded linear
functional.

Definition 64. For a normed linear space X, a linear functional T is said
to be bounded provided there is an M > 0 for which

TN < MIF| for all f € X.

The infimum of the upper-bounds is known as the norm of T and is
denoted by |T||s.

Exercise 21. Show that |T'||. =sup{Tf | fe X,|f| <1} =sup{Tf | fe X,|f| =1}
From this, we have the following.

Proposition 87. The function |-|« is a norm, and the collection of bounded
linear functionals on V is a normed linear space, which is denoted V*.
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Proof. 1t is immediate that AT, = A|T'||« and that |T'|« = 0 if and only if
T = 0. What remains to show is that

IS + T« < [S]« + 1T
To see this, we use the following observation.

sup{(S+T)f | fe X, |fl| =1}
sup{Sf | fe X, |f| =1} +sup{Tf | fe X |f] =1}
1S + 7.

IS + Tl

N

O]

One immediate consequence of a linear functional being bounded is the
following inequality, which holds for any f,he X :

() =T < T[] f = Al

From this, it immediately follows that bounded linear functionals are
continuous. In other words, whenever a linear functional is bounded, it is
also continuous. At first, this might seem like a strange statement, because
if you are used to finite dimensional linear algebra, all linear functionals are
both continuous and bounded. As such, it’s important to keep in mind that
things are more complicated for function spaces, which are generally infinite
dimensional. Actually, a linear functional being bounded is equivalent to its
continuity.

Proposition 88. For a linear functional T in a normed linear space V', the
following conditions are equivalent.

1. T is bounded.
2. T is continuous.
3. T is continuous at one point of V.

Let us now focus on the case where V is LP(FE), and try to understand
the dual space V*.

Proposition 89. Let E be measurable and 1 < p < o0. Suppose that q is
conjugate to p and that g € LY(E).

Define Ty : LP(E) — R by Ty(f) = §5 fgd mu.

Then Ty € (LP(E))" and | T« = |gllq
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Proof. Holder’s inequality shows that Ty, € (LP(E))* and that |7« < [g/,-
Therefore, the only thing to prove is the equality. In the case where
1 < p < o0, we take

g~
-1
lgllg

to be the conjugate function to g. Doing so, we have that f € L? and that
|fllp, = 1. Furthermore, we find that

f=(sgn(g))

7,0 - |

9 g1
gl ™~ e
q

which implies that
[Tgls = lgllq-

We then turn to the case where p = 1. For the sake of contradiction, we
assume that |T,] < |glle-
Then there is a set A with pu(A) > 0 for which |g| > [T, on A. Then
we take f = sgn(g)%. Then f e L' and |f|; = 1. However,
7,0 = [ o= [ 161355 > 1T
which is a contradiction. O

Before we come to the main result of this section, let us state a small
lemma which will be helpful.

Lemma 24. Let E be a measurable set, 1 < p < o0 and we have a function
g which is integrable on E and satisfies the following property.
There exists and M = 0 so that

Ugﬂstp
E

for every simple function f € LP(E).
Then g € LY(E) and |g|, < M.

Proof. (Sketch)
1. g is finite almost everywhere since it is integrable.

2. As such, we can use the simple approximation lemma to find a sequence
of simple functions ¢, so that 0 < ¢,, < |g| and ¢, — |g| as n — .
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3. Then we consider the function

f = sgn(g)¢t™"
and compute its integral against g.

4. Finally, we apply Fatou’s lemma.

O

We can now state and prove the main result of this section, which char-
acterizes the dual space of LP (except when p is infinite). We start with the
case where the domain is an interval.

Theorem 90 (Riesz representation theorem). Let [a, b] be a closed, bounded
interval and 1 < p < . Suppose T is a bounded linear functional on

LP[a,b]. Then there is a function g € L1[a,b], for which

T(f) =Lg-ff0r all f in LP[a,b]

Proof. We will only consider the case p > 1 (the proof of the case p = 1 is
similar). For x in [a,b], we define

(I)(J;‘) =T (X[a,z)) .

Intuitively, ® is analogous to a “cumulative distribution function” for T,
so we can expect that ® is the corresponding density (i.e., the function g
we are trying to find). However, the work in this proof will be to make this
precise.

We first show that this real-valued function @ is absolutely continuous on
[a,b], so that it may be differentiated almost everywhere. By the linearity
of T, for each [c,d] < [a, b], since X[c.q) = X[a,d) — X[a,c)>

O(d) = 2(c) =T (Xjaa)) = T (Xfae)) =T (X[ea))

Thus if {(ak,bx)}r_; is a finite disjoint collection of intervals in (a,b), we
have that

DR Or) =@ (ar)] = D) sen[®(be) — P (ar)] - T (X{apbr))
f=1 =1
=T (i sgn [ (bg) — @ (ar)] - X[ak,bk)>
i1
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Then, we consider the simple function f = 22:1 sgn [® (by) — @ (ap)] -
X[apby)- Evaluating T'(f) we find the following

n 1/p
I T(HI < [Tl - [ flp and |[f], = [Z (br — ak)]
k=1
Thus,
n 1/p
> (o — ak)] (7.8)

k=1

For € > 0, we take § = (¢/||T«)?, which implies that the left hand side
of Equation 77 is less than e, and thus that ® is absolutely continuous on
[a, b].

Now that we have shown that ® is absolutely continuous, we know that it
is differentiable almost everywhere and that the function g = ®’ is integrable
over [a,b]. Furthermore, by the fundamental theorem of calculus, we have
that

D0 1@ (Br) = @ (ar)| < [T
k=1

T
O(x) = J g for all x € [a, b]
0

Therefore, for each [c,d] < (a,b)

b
T (X[e,a)) = ®(d) — ®(c) = f 9 X[e,d)-
a
Now all that remains to show is that the functionals 7" and f — SZ g-f
are the same. To do so, we use the density of step functions in LP.
More precisely, since the functional 7" and the functional f — Ss g- f are
linear on the linear space of step functions, it follows that

b
T(f) = f g - f for all step functions f on [a,b]
a
If f is a simple function on [a,b], there is a sequence of step func-
tions {p,} which converges to f in LP[a,b| and also is uniformly pointwise
bounded on [a,b]. Since the linear functional T" is bounded on LP[a,b], it
follows from the continuity of the functional that

Tim T () = (/)

On the other hand, the Lebesgue Dominated Convergence Theorem implies
that

b b
lim g'son=f g-f

—
TLOO(Z a
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Therefore
b
T(f) = J g - [ for all simple functions f on [a,b]

Since T is bounded,

b
f g- f‘ = |T(f)| < |7« | f|p for all simple functions f on [a,b].

According to Lemma g belongs to L?[a,b] so the linear functional f —
SZ g - [ is bounded on LP[a,b]. This functional agrees with the bounded
functional T on the simple functions, which is a dense subspace of LP[a,b],

so these two functionals agree on all of LP|a, b].
O

In fact, this result holds for general measurable sets, not just intervals.

Theorem 91 (The Riesz Representation Theorem for the Dual of L P(E)).
Let E be a measurable set, 1 < p < o, and q the conjugate of p. For each
g € LU(E), define the bounded linear functional Ry on LP(E) by

Ry(f) =J g- f forall fin LP(FE)
E
Then for each bounded linear functional T on LP(E), there is a unique func-
tion g € L1(E) for which
Ry =T, and [T+ =gl

Observation 8. Remark Let [a,b] be a nondegenerate closed, bounded in-
terval. Hélder’s Inequality shows that if f belongs to L'[a,b], then the func-

tional g — SZ f+g is a bounded linear functional on L*[a,b]. However, there
are bounded linear functionals on L*[a,b] that are not of this form.

In Chapter 19 Section 3 of the book, Royden-Fitzpatrick explain a result
of Kantorovich which details the dual of L®. Feel free to look at this section
for details.

7.7 Problems

LP spaces appear on nearly every qualifying exam, so we will spend some
time working on problems involving them.

127



. August 2020 # 2 Let 1 < p,q < o0 be such that % + % = 1. For any
f e L2([0,1]), set

o) = | sy
Prove that g € L9([0,1]) and [g], < 27Y9| f|,.

. January 2020 # 4 Let f,g € L'(R). Given n € N, define (T,,f) =
f(z —n). Prove that

lim [T f +gly = [ fl1 + gl
n—o0

. Fall 2011 # 2 Suppose f is a measurable function on [0, 1] such that
for every 1 < p < oo, f € LP[0, 1], and suppose there exists a B such
that | f|, < B. Prove that f e L*[0,1].

. Fall 2014 # 3 Let p > 1 and (f,,) be a sequence of measurable functions
in LP[0, 1] such that lim, o fn(z) = f(x) almost everywhere. Show
that limy, e | fo — f|, = 0 if and only if lim,—o | ful, = [ flp

. Fall 20116 # 1 Let f:[0,1] — R be a Lebesgue integrable function and
I = §, [f(2)]"dz.

(a) if | f|leo > 1, show that lim,_,q I, is equal to co.

(b) if || f|o < 1, show that lim,_,4 I, exists and evaluate the limit.
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Chapter 8

Fubini and Tonelli Theorems
in R"

In this chapter, we discuss multivariate integration and determine when it
is possible to compute a multiple integral as an iterated integral, as you saw
in multivariate calculus. This material is covered in Chapter 20 of Royden-
Fitzpatrick. Unfortunately, it uses quite a few terms that we have not yet
defined, so it might be worthwhile to read [Bal08] for more details.

8.1 A crash course in more general measures and
integration

In order to discuss this, we need to introduce measurable spaces in a bit
more generality.

Definition 65. A measure space (X, M, pn) is a set X with a o-algebra M
of subsets of X and a measure p, which is a function p: M — [0, 00] which
satisfies

1. () =0

2. W is countably additive.
Definition 66. A measure space is

1. finite if W(X) < o0

2. o-finite if X is the union of countably many sets, each of which has
finite measure.
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3. complete if u(E) = 0 implies that every subset of E is measurable.

Example 6. 1. The Lebesgue measure on [0,1] is finite, o-finite and
complete.

2. The Lebesgue measure on R is not finite, but is o-finite and complete.
3. The Borel measure on R is o-finite, but neither finite nor complete.
4. The counting measure on R is neither finite nor o-finite, but is com-
plete.
8.1.1 Product measures

The goal now is define the Lebesgue measure on R? (or R"). To this end,
we will define the product measure from the Lebesgue measure on R. More
generally, given two measure spaces (X, A, 1) and (Y, B,v), we can build a
product measure on the Cartesian product X x Y.

Definition 67 (Measurable rectangles). If A< X and B <Y, we call AxB
a rectangle. If Ae A and B € B, we call A x B a measurable rectangle.

We can define the measure of a measurable rectangle to be the product
of the measures of A and B.

Definition 68. If R = A x B is a measurable rectangle, we define the
measure of R to be A\(R) = u(A) x v(B).

Example 7. Let [a,b] € R and [¢,d] = R, both induced with the Lebesgue
measure. What is A([a,b] x [c,d])?

To make sure that this definition is consistent, we’ll verify the following
lemma.

Lemma 25. Let {Ag x By}, be a countable disjoint collection of measur-
able rectangles whose union also is a measurable rectangle A x B. Then

p(A) x v(B) = > p(Ax) x v (By)
k=1

Proof. Fix a point x € A. For each y € B, the point (z,y) belongs to exactly
one Ay x Bg. Therefore we have the following disjoint union:

B=UBk

{klze Ay}
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Figure 8.1: A measurable rectangle as the union of countable measurable
rectangles

By the countable additivity of the measure v,
v(B)= Y, v(By)
{klreAy}

Rewriting this equality in terms of characteristic functions, we find the
following

v(B) - xalz) = 2 v (Bg) - xa,(x) forall z e A
k=1

Since each Ay is contained in A, this equality also clearly holds for z € X\ A.
Therefore

0
v(B) x4 = Z v (Bg) - xa, on X
k=1

By the Monotone Convergence Theorem,

0

(A x0(B) = | vB)xadi= 3 | v (Bxadi = 3 4 <0 (5)
k=1 k=1

O]
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Technically speaking, X is actually a pre-measure, and we need to con-
sider its Caratheodory extension to define the measure. Getting into the
details of this would take several weeks, so we will not do so. However, the
Lebesgue measure is a complete outer measure, so there is a short-cut.

Definition 69. Given two measure spaces (X, A, u) and (Y,B,v) and a set
E c X xY, we define the outer measure

o0]

(5% v)*(E) = inf 3 ARy,
k=1

where the infimum is taken over all countable collections of measurable rect-
angles Ry, which cover E.

Definition 70. A set E < X x Y is measurable if
(1 V)*(8) = (4 x V)*(B A ) + (j x 1)*(E° A §)
for all sets S.

Combining these, we can define the product measure.

Definition 71. The space (X xY, measurable sets, uxv) is a measure space,
and the measure is known as the product measure.

8.1.2 Some measurable sets

It is helpful to know a good collection of measurable sets in R™, since our
definition of measurable makes it hard to construct them by hand. For this,
we have the following proposition.

Proposition 92. Any open subset U of R? is measurable with respect to the
product measure.

In fact, open sets are Borel (i.e., the intersection/union/complements of
countably many measurable rectangles. However, it will not be necessary to
prove this.

As with the case in R, there are many Lebesgue measurable sets which
are not Borel. As a note of caution, measurable sets in higher dimensions
can be very complicated, so it is worthwhile to verify that you are sets are
measurable.
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8.2 Integration with respect to a general measure

Before we can discuss the Fubini and Tonelli theorems, we need to say what
it means to integrate with respect to a more general measure. The way that
this is done is essentially the same as in the one-dimensional case, by using
simple functions.

Definition 72 (Simple functions). Given a measure space (X, A, i), a sim-
ple function s : X — R is a function whose range is finite and for which the
1NVerse 1mage

sTHa)={reX | fx) =a}

is a measurable set (i.e., in A) for all a € R.
Definition 73. For non-negative simple functions, we define the integral
| sau= ¥ ants @),
X a€ range(s)

Then, given a function f : X — R* which is non-negative and measur-
able (i.e., the pre-image of every open set is in \A), we define the integral of

f as
J fd,uzsup{J sdp | s simple ands<f}.
X X

Finally, we say that a function is integrable if both its positive and
negative parts are integrable.

8.3 Product measures and iterated integrals

We are now able to discuss the Fubini and Tonelli theorems. Before stating
these theorems, let us give one further definition.

If f:2xy — Ris a measurable function, for x € X, we define the
function f(z,) : Y — R to be the a-slice of f, For y € Y, we say that the
function f(-,y) : X — R is the y-slice of f.

Theorem 93 (Fubini’s Theorem). Let (X, A, u) and (Y, B,v) be two mea-
sure spaces and v be complete. Let f be integmble{ﬂ over X x'Y with respect
to the product measure u x v. Then for almost all x € X, the x-slice of
f, f(x,-), is integrable over Y with respect to v and

[ a5 = [| [ stamavto | auta.

' This means that f is measurable and that §, . |f[d(p x v) < o0.
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Theorem 94 (Tonelli’s theorem). let (X, A, u) and (Y, B,v) be o-finite mea-
sure spaces. Let f be a measurable function on X xY with respect to (uxv).
If0 < f < o, then

1. for almost all x € X, the x-slice is v-measurable,
2. for almost all y € X, the y-slice is p-measurable,
3. the function §y f(-,y) dv(y) is p-measurable,

4. the function § f(x,-) du(z) is v-measurable.

JXW fd(pxv) = L UY f(az,y)du(y)] dp(z J U flx,y) du(z )} dv(y)

The proof of Fubini and Tonelli’s theorem in Royden requires a fair
amount of background, so I recommend reading the proof in Axler [Ax120],
where it is Theorem 5.28. We will not cover the proofs in this class, but you
should read them to understand the basic idea.

Before we finish up, let us provide two examples which show why the
assumptions in these theorems are necessary.

5.

Non-Example. 1. Prove So [SO 2+y2)2 dy] dr = +7%

2. Prove Sé [Sé (zgyy)gda:] dy = —%
3. FExplain why the answer to the above parts do not violate Fubini’s the-
orem.

Proof. The function f = % is continuous on [0, 1] x [0, 1] except at

the origin, hence is measurable.
Doing the first integral, we find that

fl $2_y2 y— y 1 B 1
0 (m2+y2>2 y= $2+y2 y:0_1+l‘2

1/l 1

— 1
([ 2 are [t
o \Jo (22 +¢2) o L+z 4

and
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Proceeding to the integral computation in the opposite order we get

1/l _
f U ﬂfydx>dy__7r
o \Jo (22 +42)? 4
To understand why this doesn’t contradict Fubini-Tonelli, we estimate
S]x[ |f(£U, y)\d(it, y) We have

1 /2 1.2 200\ 2 i 2
J d(z,y) = J <f Ir” cos7(6) o (9)|rd9> dr
IxI 0 0 r

L (7/2 | cos(26)]
:J f 72rd9dr
J f cos( d0d

—o- | Zapd
2f0 "

=limr — 0 —In(r) = .

2% — o2
(22 + y2)?

As such, f ¢ LY(I x I), so this does not contradict Tonelli’s theorem. [J

It’s also good to have an example in mind of why it is necessary to
assume that the measures are o-finite. For this, we consider the following
example, which is taken from Axler [AxI20] 5.30.

Example 8. Suppose B is the o-algebra of Borel subsets of [0,1],\ is
Lebesgue measure on ([0,1],B), and p is counting measure on ([0, 1], B).
Let D denote the diagonal of [0,1] x [0, 1]; in other words,

D = {(z,z):xz€[0,1]}.

Then
f j o, y) duly) dA(z) = f Ldr=1,
[0,1] J[0,1] [0,1]

J f XD(w,y)dA(x)du(y)—f 0du = 0.
[0,1] J[0,1] [0,1]

but
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