
Math 515: Real Analysis I

Lecture Notes

Gabe Khan (based off notes by Tim McNicholl)

July 27, 2023



Contents

1 Introduction 4
1.1 Lecture 1: A review of Riemann integration . . . . . . . . . . 4

1.1.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Why should we care? . . . . . . . . . . . . . . . . . . . 9

1.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Measurable Sets and their Measures 11
2.1 Outer measures . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Monotonicity and translation invariance . . . . . . . . 14
2.1.2 Countable sub-additivity . . . . . . . . . . . . . . . . 16

2.2 The need for σ-algebras . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Borel sets . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Approximating Measurable Sets . . . . . . . . . . . . . . . . . 24
2.4 The Lebesgue Measure . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Countable Additivity . . . . . . . . . . . . . . . . . . . 31
2.4.2 Continuity of measure . . . . . . . . . . . . . . . . . . 32
2.4.3 Everywhere and Almost Everywhere . . . . . . . . . . 34

2.5 Non-Measurable Sets . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 The Cantor Set . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Counting subsets . . . . . . . . . . . . . . . . . . . . . 40

3 Measurable Functions 41
3.0.1 A brief remark on σ-algebras . . . . . . . . . . . . . . 42

3.1 Sums, products, pointwise limits, etc. . . . . . . . . . . . . . . 42
3.2 The Cantor Function and non-measurable functions . . . . . 45

3.2.1 A remark for those interested in probability . . . . . . 49
3.3 Approximating measurable functions . . . . . . . . . . . . . . 50
3.4 Littlewood’s three principles . . . . . . . . . . . . . . . . . . . 53

3.4.1 The third principle: Egoroff’s theorem . . . . . . . . . 54

1



3.4.2 The second principle: Lusin’s theorem . . . . . . . . . 55

4 Lebesgue Integration 58
4.1 The Lebesgue integral for non-negative functions . . . . . . . 62
4.2 The Lebesgue integral of real-valued functions . . . . . . . . . 67

4.2.1 The dominated convergence theorem . . . . . . . . . . 69
4.2.2 Uniform integrability and the Vitali convergence the-

orem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Convergence in measure . . . . . . . . . . . . . . . . . . . . . 73
4.4 The Riemann and the Lebesgue integral . . . . . . . . . . . . 75

5 Differentiation and Integration 81
5.1 Monotone functions . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Functions of bounded variation . . . . . . . . . . . . . . . . . 88
5.3 Absolutely continuous functions . . . . . . . . . . . . . . . . . 90
5.4 Indefinite Integrals and the Fundamental Theorem of Calculus 94

5.4.1 The Lebesgue Decomposition . . . . . . . . . . . . . . 97
5.5 A brief remark on Radon-Nikodym derivatives . . . . . . . . 97

5.5.1 An even briefer remark on the Lebesgue Decomposi-
tion theorem . . . . . . . . . . . . . . . . . . . . . . . 99

6 Convex functions 100
6.1 The derivatives and sub-derivatives of convex functions . . . . 102
6.2 Jensen’s inequality . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 A brief remark on convex duality . . . . . . . . . . . . . . . 105

7 Basics of functional analysis 107
7.1 Normed linear spaces and Banach spaces . . . . . . . . . . . . 107
7.2 Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3 Conjugate exponents and some fundamental inequalities . . . 111

7.3.1 Young’s inequality and the Peter-Paul version . . . . . 111
7.3.2 Holder’s Inequality . . . . . . . . . . . . . . . . . . . . 112
7.3.3 Minkowski’s inequality . . . . . . . . . . . . . . . . . . 113
7.3.4 Embeddings of Lp-spaces . . . . . . . . . . . . . . . . 115

7.4 Lp and pointwise convergence . . . . . . . . . . . . . . . . . . 116
7.5 Approximations and Separability . . . . . . . . . . . . . . . . 120
7.6 The duality of Lp . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.6.1 Bounded and continuous functionals . . . . . . . . . . 122
7.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2



8 Fubini and Tonelli Theorems in Rn 129
8.1 A crash course in more general measures and integration . . . 129

8.1.1 Product measures . . . . . . . . . . . . . . . . . . . . 130
8.1.2 Some measurable sets . . . . . . . . . . . . . . . . . . 132

8.2 Integration with respect to a general measure . . . . . . . . . 133
8.3 Product measures and iterated integrals . . . . . . . . . . . . 133

3



Chapter 1

Introduction

The topic of this class is real analysis, with a particular focus on measure
theory and integration. Since the qualifying exam will primarily focus on
functions of a single real variable, this will also be our main focus. We will
develop the notion of the Lebesgue integral, which supplants the Riemann
integral by being robust enough to handle fairly pathological functions and
flexible enough to form the basis for modern functional analysis.

The lecture notes and homework are primarily taken from the textbook
by Royden and Fitzpatrick [RF88], which is the textbook for this course.
Furthermore, much of the material is taken from previous versions of this
course. In particular, this text is mostly modified from the 2015 lecture
notes by Timothy McNicholl.

1.1 Lecture 1: A review of Riemann integration

In this introductory lecture, we will review some notions of Riemann integra-
tion, which is the historical (and pedagogical) predecessor to the Lebesgue
integral that we will study in this course. We start with some basic defini-
tions.

Definition 1. A partition P of the interval ra, bs is a sequence of real num-
bers px0, . . . , xnq with

a “ x0 ă x1 ă . . . xn “ b.

Intuitively, the partition cuts up the interval into n subintervals rxi, xi`1s.
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Definition 2. A real valued function f : RÑ R is bounded on the interval
ra, bs if there is a positive number M so that

|fpxq| ďM

for all x P ra, bs.

Here, the domain of f can be any set which contains ra, bs, and not
necessarily the entire real line.

Definition 3. Suppose that f is a real-valued bounded function on ra, bs.

1. A lower Riemann sum for f on ra, bs is a sum of the form

n
ÿ

j“1

vjpxj ´ xj´1q

where px0, . . . , xnq is a partition of ra, bs and vj ď fpxq whenever x P
rxj´1, xjs.

2. An upper Riemann sum for f is the same, except now we insist that
vj ě fpxq whenever x P rxj´1, xjs.

Intuitively, the lower Riemann sum is an under-estimate for the area
underneath the function fpxq whereas the upper Riemann sum is an over-
estimate.
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By taking finer and finer partitions of the interval ra, bs, we can refine our
estimates for the area under the curve and (hopefully), compute its Riemann
integral.

Definition 4. The lower Riemann integral
ş

is the supremum of all lower
Riemann sums with respect to all possible partitions.

Definition 5. The upper Riemann integral
ş

is the infimum of all upper
Riemann sums with respect to all possible partitions.

We say that a function f is Riemann integrable if the lower Riemann
integral is equal to the upper Riemann integral.

Example. If f is continuous on ra, bs, then f is integrable.

Proof. Since f is a continuous function on a closed and bounded interval, it
is uniformly continuous. Therefore, for any ε ą 0, we can find a δ so that

|fpxq ´ fpyq| ă ε

whenever |x´ y| ă δ.
We then take a partition P whose mesh1 is smaller than δ and consider

the upper and lower Riemann sums

LP “
n
ÿ

j“1

fpxjqpxj ´ xj´1q

and

UP “
n
ÿ

j“1

fpxjqpxj ´ xj´1q,

where xj “ argminxPrxj´1,xjs fpxq and xj “ argmaxxPrxj´1,xjs fpxq.
We now compare LP and UP using the uniform continuity of f , we have

the following estimate

UP ´ LP “

n
ÿ

j“1

fpxjqpxj ´ xj´1q ´
n
ÿ

j“1

fpxjqpxj ´ xj´1q

“

n
ÿ

j“1

`

fpxjq ´ fpxjq
˘

pxj ´ xj´1q

ă

n
ÿ

j“1

εpxj ´ xj´1q

“ ε ¨ pb´ aq

1In other words, we consider a partition for which xj´xj´1 ă δ for all j with 1 ď j ď n.
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For any upper and lower sum, we have that

LP ď

ż

ď

ż

ď UP .

By taking ε arbitrarily small, this shows that L “ U .

In fact, we can Riemann integrate functions which have some disconti-
nuities (and we will prove a much stronger version of the following exercise
later in the course).

Exercise 1. Let f be a bounded real-valued function on ra, bs that is con-
tinuous except possibly at finitely many points. Show that f is Riemann
integrable.

On the other hand, by considering highly discontinuous functions, we
can create functions which are not Riemann integrable.

Non-Example. The function f : r0, 1s Ñ R with

1Qpxq “

#

1 whenever x P Q
0 whenever x R Q

is not Riemann integrable.

Proof. In any interval pxj´1, xjq, there are irrational number. Therefore, if
řn
j“1 vjpxj ´ xj´1 is a lower Riemann sum, then vj ď 0 and thus we have

that L ď 0. Similarly, in any interval there are rational numbers, so if
řn
j“1 vjpxj ´ xj´1 is an upper Riemann sum, then vj ě 1 for all j. As such,

U ě 1.

With slightly more effort, it is possible to show that L “ 0 and U “ 1,
but the key thing is that they are not equal.

In this previous example, the rational numbers are “small” in that they
are a countable subset of an uncountable space, and thus we might expect
that

ż 1

0
1Q dx “ 0.

We will later see that this is indeed the case if we use Lebesgue integral.
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Figure 1.1: An upper and lower sum for a reasonably discontinuous function

1.1.1 Intuition

The idea of the Riemann integral is to slice a function vertically into narrow
strips which can be approximated by rectangles. However, what this exam-
ple shows is that for functions which are extremely discontinuous, it is not
possible to determine the correct “height” to make the slices.

The idea of the Lebesgue integral is to instead cut vertically, which
transforms the problem from one of determining how high to make the slices
to determining the size of sets.

Figure 1.2: A Riemann sum (left) and an approximation by simple functions
(right)
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1.1.2 Why should we care?

At its core, measure theory studies the “size” of sets. In other words, given
a set X, we want a way to determine how large it is. This turns out to be
a fairly subtle question, and one with a long history.

There are many ways to discuss the size of a set. To give two basic exam-
ples, one could start by simply counting the elements of X (i.e., determining
its cardinality)2. Another option for topological spaces is to determine the
dimension of the set. However, our focus is in measurements which corre-
spond to an integral of one form or another.

For some of you, the idea of extending the Riemann integral to integrate
more functions might be interesting and natural. For others, functions which
fail to be Riemann integrable are already quite pathological, so the idea of
extending the integral might appear to be an esoteric pursuit.

However, the significance of the Lebesgue integral is that it is much more
robust than the Riemann integral. Because of this, we will be able to prove
strong convergence theorems, which play a central role in modern analysis,
PDEs, probability, etc. To give an analogy, the mean and intermediate value
theorem play a central role in analysis, but these results do not hold in Q,
but require its metric completion R. In this context, the Riemann integral
is somewhat akin to the rational numbers, and the Lebesgue integral is R.

1.2 Resources

In this section, I have included some references which might be helpful for
your studying.

1. Sheldon Axler wrote a textbook which is freely available online [Axl20].
It’s a bit more elementary than our course, so might be a good place
to start.

2. I highly recommend the textbook by Gerald Folland [Fol99]. This text
considers measures in greater generality from the outset and covers the
material in a different order than the other books though, so might be
a good reference.

3. Terry Tao wrote a introduction to measure theory which is worth read-
ing [Tao11]. It is also available freely online.

2For countable subsets, the cardinality can be phrased as an integral with respect to a
so called “counting measure.”
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4. Gerald Teschl wrote a book on functional analysis which discusses a
lot of topics that we cover in the course [Tes98]. It is freely available
online.
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Chapter 2

Measurable Sets and their
Measures

In this chapter, we will build up measure theory with the goal of defining
the “length” of a set of real numbers. Our purpose is to motivate the notion
of the Lebesgue measure so we will not start with an abstract definition of a
measure. Instead, we will start with some natural properties of a “length”
and build from there.

There are a few properties of lengths which are “obvious.” For instance,
any notion of length should satisfy that the length of any finite interval ra, bs
is simply a ´ b. Similarly, the length of any unbounded interval should be
infinite.

Going further, it is natural to request that the length of a finite (or
countable) union of disjoint intervals is the sum of its lengths and that the
length of a subset should be less than the length of its parent.

2.1 Outer measures

We now give our first attempt to define the “length” of a set of real numbers,
which is the outer measure, denoted m˚.

This measure satisfies some of the properties that we desire. For instance,
the outer measure of an interval is its length. The outer measure also has
the advantage that it is very intuitive and well-defined for any subset of the
real numbers. However, this flexibility comes at a cost and we will see that
this attempt fails to have some natural properties we might expect for a
notion of length.
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For instance, given A,B Ă R with AXB “ H, it may be that

m˚pAYBq ă m˚pAq `m˚pBq.

In order to define the outer measure, we start by defining a “length”
function ` : PpRq Ñ R. Here, PpRq denotes the set of subsets of R

1. If I is a bounded interval, then `pIq denotes the usual length of I.

2. If I is an unbounded interval, then `pIq “ 8.

3. If tIjujPF is a countable pairwise disjoint family of intervals1, then

`

˜

ď

jPF

Ij

¸

“
ÿ

jPF

`pIjq. (2.1)

Before moving on, we make some remarks.

1. In Equation 2.1, all the terms in the right hand side of the equation
are non-negative. Thus, if the series converges it does so absolutely
and the order of summation does not matter.

2. If U is any non-empty open set of reals, there is a countable pairwise
disjoint family of open intervals tIjujPF so that U “

Ť

jPF Ij . Thus
`pUq is defined for every non-empty open sets of real numbers.

3. We shall refer to ` as the length of U

With this in mind, we now define the outer measure.

Definition 6. Suppose E is a set of real numbers. The outer measure of E,
denoted m˚pEq, is defined to be the largest real number that is less than or
equal to the length of every open set including E. In other words,

m˚pEq “ inf

#

ÿ

jPF

lpIjq

ˇ

ˇ

ˇ

ˇ

ˇ

E Ă
ď

jPF

Ij

+

.

Note that this definition is very slightly different from the definition
given in the book. However, this difference is not important.

1We will often use the notation F to denote a countable set. Such a set may be finite,
which is why we are not using N as our index.
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Example. There are a few outer measures that can readily be computed.

1.
m˚pHq “ 0

2.
m˚pR “ 8

3. Let a P R,
m˚ptauq “ 0

Exercise 2. Show that the outer measure of a countable set is zero.

Proposition 1. The outer measure of an interval is its length.

Proof. Claim 1: `pIq ď m˚pIq.
Suppose U is an open set with I Ă U . There is a countable pairwise

disjoint family of open intervals tIjujPF so the U “
Ť

jPF Ij . Since I is
connected, there is a j0 P F with I Ă Ij0 . Therefore,

`pIq ď `pIj0q ď `pUq.

Taking infimums, we find that `pIq ď m˚pIq.
Claim 2: m˚pIq ď `pIq.
We break this part of the argument into two cases

1. I is unbounded. Then `pIq “ 8, and we are done.

2. If I is bounded, let a be the left end-point and b be the right end-point.

We let ε ą 0 and take U “ pa´ ε, b` εq. We see that I Ă U. Further-
more, we that that

m˚I ď `pUq “ pb´ aq ` 2ε “ `pIq ` 2ε.

Since epsilon was arbitrary, we see that m˚pIq ď `pIq.

Let us use what we’ve seen to solve a question from the qualifying exams.
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Exercise 3 (1997 Qualifying Exam, Problem 6). For every ε ą 0 and every
subset E of the real numbers, define

µεpEq “ inf
8
ÿ

n“1

r` pInqs
1
2

where `p¨q denotes the length of an interval and the infimum is taken over all
countable collections of open intervals tI1, I2, . . .u which cover E for which
` pInq ă ε for all n. Prove the following:

1. Show that µε is an outer measure on the real line.

2. Show that

µpEq :“ sup
εą0

µεpEq “ lim
εÑ0`

µεpEq

3. Show that µp0, 1q “ `8. (Hint: If one has intervals In of length ď ε

which cover p0, 1q, then r` pInqs
1
2 “

`pInq

r`pInqs
1
2
ě ε´

1
2 ` pInq ¨

˙

As a challenge (which was not part of the qualifying exam), try to find a
set E for which 0 ă µpEq ă 8. This is an unfair task without any context,
but it’s a good thought experiment anyway.

2.1.1 Monotonicity and translation invariance

We now show that the outer measure has two natural and desired properties
of length, namely that subsets cannot be bigger than the original set (i.e.,
the outer measure is monotonic) and that if you translate a set, its outer
measure remains the same (i.e., the outer measure is translation invariant).

Proposition 2. If A Ă B Ă R, then m˚paq ď m˚pBq.

Proof. Suppose A Ă B Ă R. If U is an open set that contains B, then it
also contains A. Thus,

inf t`pUqB Ă Uu ě rinf t`pUqA Ă Uu ,

and so
m˚pBq ě m˚pAq
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Definition 7. If A Ă R and if a P R, then

a`A “ ta` x | x P Au.

Proposition 3. Given A Ă R and a P R, m˚pAq “ m˚pa`Aq

Proof. First note that if I is an interval then `pIq “ `pa` Iq.
We then note that if tIjujPF is a pairwise disjoint family of intervals,

ta` IjujPF is as well and

a`
ď

Ij “
ď

pa` Ijq.

If follows that if U is open `pUq “ `pa ` Uq. If U is an open set that
includes A, then a`U includes a`A and has the same length as U . Thus,

inf t`pUq| A Ă U and U open u ě inf t`pV q| a`A Ă U and V open u

and so,
m˚pAq ě m˚pa`Aq.

Note that A “ ´a` pa`Aq, so by a symmetric argument we have that

m˚pa`Aq ě m˚pAq.

Exercise 4. If A Ă R and if λ ą 0, then λA is defined to be the set

λA “ tλx | x P Au.

Show that m˚pλAq “ λm˚pAq.

Here is a more challenging version of the previous exercise (since we
haven’t defined outer measure in Rn).

Exercise 5. If A Ă Rn and if M is an n ˆ n matrix, then MA is defined
to be the set

MA “ tMx | x P Au.

What is m˚pMAq?

Here is some food for thought, which we will revisit later in the course.

Exercise 6. If A,B Ă R, then

A`B “ ta` b | a P A, b P Bu.

What can we say about m˚pA ` Bq in terms of m˚pAq and m˚pBq? Are
there sets with m˚pAq “ m˚pBq “ 0 but m˚pA`Bq ‰ 0?
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2.1.2 Countable sub-additivity

We now establish one of the most important properties of length, which is
that it is countably sub-additive.

Definition 8. An measure is said to be countably sub-additive if

m˚

˜

8
ď

i“1

Ek

¸

ď

8
ÿ

i“1

m˚ pEkq

for any countable collection of sets Ek (disjoint or otherwise).

If one of the Ek ’s has infinite outer measure, the right hand side is
infinite, and there is nothing to prove. We therefore suppose each of the Ek
’s has finite outer measure. Let ε ą 0. For each natural number k, there is
a countable collection tIk,iu

8

i“1 of open, bounded intervals for which

Ek Ď
8
ď

i“1

Ik,i and
8
ÿ

i“1

` pIk,iq ă m˚ pEkq ` ε{2
k.

Now, tIk,iu1ďi,kă8 is a countable collection of open, bounded invervals
that cover

Ť8
k“1Ek. Thus we have that

m˚

˜

8
ď

k“1

Ek

¸

ď
ÿ

1ďk,iă8

` pIk,iq “
8
ÿ

k“1

«

8
ÿ

i“1

` pIk,iq

ff

ă

8
ÿ

k“1

”

m˚ pEkq ` ε{2
k
ı

“

«

8
ÿ

k“1

m˚ pEkq

ff

` ε

Note that all of the terms are positive, so we can rearrange terms in the
final equality. Since ε was arbitrary, we obtain the desired inequality.

Note also that if tEku
n
k“1 is a finite collection of sets, we can prove finite

sub-additivity by taking Ek “ H for k ą n.

2.2 The need for σ-algebras

The outer measure gives our first definition of length for arbitrary sets, and
we have seen that it does a pretty good job. However, it has one major
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drawback, which is that it fails to be countably additive, or even finitely
additive.

In other words, it is possible to find two sets A and B which are disjoint
and satisfy

m˚pAYBq ă m˚pAq `m˚pBq.

It is not really possible to construct these sets by hand. In particular, it
requires the Axiom of Choice. However, the fact that the counterexamples
are so pathological suggests that to fix this problem, all we need to do is
restrict our attention to sets which are somehow reasonable, which leads
directly into the notion of measurability and σ-algebras.

Definition 9. Let A be a set of reals. A is measurable if m˚pXq “ m˚pAX
Xq `m˚pAc XXq for every X Ď R.

Here, we use the notation Xc “ R´X whenever X Ď R..
Remark: A is measurable if and only ifm˚pXq ě m˚pAXXq`m˚pAcXXq

for every X Ď R.

Example. We can immediately find some examples of measurable sets.

1. If m˚pAq “ 0, then A is measurable. To see this, suppose m˚pAq “ 0.
Since m˚ is monotonic, m˚pA X Xq “ m˚pA X Xcq “ 0 for every
X Ď R.

As a result, H, and every singleton are measurable.

2. Since pAcqc “ A, for any set A which is measurable, its complement
Ac must also be measurable. Thus, R (the complement of the empty
set) is measurable.

After looking at the definition of measurable sets, we see that there is
an algebraic structure to measurable sets, which we can make precise with
the notion of a σ-algebra.

Definition 10. Suppose S Ď PpRq. S is a σ-algebra over R if it meets the
following criteria.

1. R P S.

2. For every X P S, Xc P S. (Closure under complements)

3. For every sequence of sets tAnu
8
n“0 so that An P S for every n P N,

Ť8
n“0An P S. (Closure under countable unions)
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Suppose S is a σ-algebra over R.

1. If X,Y P S, then X Y Y P S. Proof: Set X0 “ X, X1 “ Y , Xn “ H

when n ą 1. Then, X Y Y “
Ť8
n“0Xn.

2. If Xn P S for each n P N, then
Ş8
n“0Xn P S.

Proof: DeMorgan’s laws.

Example. There are a few simple examples of σ-algebras that we can write
down immediately.

1. PpRq is a σ-algebra over R.

2. tH,Ru is a σ-algebra over R.

Our next goal now is to show that the set of measurable subsets of R is
a σ-algebra. To do so, we will need several lemmas.

Lemma 1. Suppose E1, . . . , Em are measurable subsets of R. Then,
Ťm
j“1Em

is measurable.

Proof. We will use induction (on m). The base case, where m “ 1 is trivial,
so the hard work will be the inductive step.

Suppose
Ťm´1
j“1 Ej is a measurable set. Let F1 “

Ťm´1
j“1 Ej . Let F2 “ Em.

We must show that F1 Y F2 is measurable. Let X Ď R. We need to show

m˚pXq “ m˚pX X pF1 Y F2qq `m
˚pX X pF1 Y F2q

cq.

What follows is a sequence of calculations by intersecting various different
sets to get the desired equality.

Claim 1: m˚pXq “ m˚pXXF1q`m
˚pXXF c1XF2q`m

˚pXXpF1YF2q
cq.

Since F1 is measurable, we have that

m˚pXq “ m˚pX X F1q `m
˚pX X F c1 q.

Since F2 is measurable,

m˚pX X F c1 q “ m˚pX X F c1 X F2q `m
˚pX X F c1 X F

c
2 q

“ m˚pX X F c1 X F2q `m
˚pX X pF1 Y F2q

cq.

So:

m˚pXq “ m˚pX X F1q `m
˚pX X F c1 X F2q `m

˚pX X pF1 Y Fcq
cqq.
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Claim 2: m˚pX X F1q `m
˚pX X F c1 X F2q “ m˚pX X pF1 Y F2qq.

Since F1 is measurable,

m˚ppX X F1q Y pX X pF
c
1 X F2qqq “ m˚pppX X F1q YX X pF

c
1 X F2qq X F1q

`m˚pppX X F1q Y pX X pF
c
1 X F2qqq X F

c
1 q

“ m˚pX X F1q `m
˚pX X pF c1 X F2qq.

But m˚pX X F1 YX X F
c
1 X F2q “ m˚pX X pF1 Y F2qq.

Therefore, m˚pXq “ m˚pX X pF1 Y F2qq `m
˚pX X pF1 Y F2q

cq.

This lemma has the following important corollary.

Corollary 1. If X,Y Ď R are measurable, then so are X X Y and X ´ Y .

The proof of this follows by applying De Morgan’s laws, so I’ll leave it
as a small exercise.

Using the same technique as the previous lemma, it is also possible to
prove the following lemma. Since the idea is exactly the same, we will not
write down the proof.

Lemma 2. Suppose A,E1, . . . , Em Ď R. Suppose that E1, . . . , Em are mea-
surable and that pE1, . . . , Emq is pairwise disjoint. Then,

m˚pAX
m
ď

j“1

Ejq “
m
ÿ

j“1

m˚pAX Ejq.

We will now prove another helpful lemma towards the goal of showing
that measurable sets form a σ-algebra.

Lemma 3. Suppose S Ď PpRq. Then, S is a σ-algebra over R if and only
if it meets the following three criteria.

1. R P S.

2. X ´ Y P S whenever X,Y P S.

3.
Ť8
n“0An P S whenever tAnu

8
n“0 is a pairwise disjoint sequence of sets

in S.
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Proof. If S is a σ-algebra, then by definition and the previous corollary, S
satisfies these three criteria.

Conversely, suppose S satisfies these three criteria. Then, R P S, and
(2) implies closure under complementation. It only remains to show that S
is closed under countable unions.

Claim 1: X Y Y P S whenever X,Y P S.
To show this, suppose X,Y P S. Set X0 “ X, X1 “ Y ´X, and Xn “ H

when n ą 1. It follows from (2) that H P S and Y ´X P S. By construc-
tion, tXnu

8
n“0 is a pairwise disjoint sequence. So, by 3,

Ť8
n“0Xn P S. But,

X Y Y “
Ť8
n“0Xn.

Claim 2: S is closed under countable unions.

Let tAnu
8
n“0 be a sequence of sets in S. For each n P N, let

Bn “ An ´
ď

jăn

Aj .

By Claim 1,
Ť

jănAj P S for each n. By (2), Bn P S for each n P N.

By construction, tBnu
8
n“0 is pairwise disjoint. Thus, by (3),

Ť8
n“0Bn P S.

However,
Ť8
n“0An “

Ť8
n“0Bn.

Thus, S is a σ-algebra.

With this lemma in hand, we can finally show that the Lebesgue mea-
surable sets form a σ-algebra.

Theorem 4. The set of all measurable subsets of R is a σ-algebra over R.

Proof. We apply Lemma 3. We have already observed that R is measurable
and that the set of measurable sets is closed under set differences.

What remains to show is that the set of measurable sets is closed under
countable disjoint unions. Suppose tEnu

8
n“0 is a pairwise disjoint sequence

of measurable subsets of R. Set E “
Ť8
n“0En. We need to show that E is

measurable, i.e., for X Ď R, we have that

m˚pXq “ m˚pX X Eq `m˚pX X Ecq.

Claim 1: m˚pXqX ě
ř8
n“0m

˚pX X Enq `m
˚pX X Ecq.
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Let m P N. By Lemma 1,
Ťm
n“0En is measurable. So,

m˚pXq “ m˚pX X
m
ď

n“0

Enq `m
˚pX X

˜

m
ď

n“0

En

¸c

q.

By Lemma 2,

m˚pX X
m
ď

n“0

Enq “
m
ÿ

n“0

m˚pX X Enq.

At the same time, p
Ťm
n“0Enq

c Ě Ec. So,

m˚pX X

˜

m
ď

n“0

En

¸c

q ě m˚pX X Ecq.

Thus,

m˚pXq ě
m
ÿ

n“0

m˚pX X Enq `m
˚pX X Ecq

for every m P N. Thus, Claim 1 holds.

Claim 2: m˚pXq ě m˚pX X Eq `m˚pX X Ecq.

By Claim 1,

m˚pXq ě
8
ÿ

n“0

m˚pX X Enq `m
˚pX X Ecq.

Since outer measure is countably subadditive,

8
ÿ

n“0

m˚pX X Enq ě m˚p
8
ď

n“0

X X Enq.

This establishes Claim 2.

Thus, m˚pXq “ m˚pX X Eq `m˚pX X Ecq.

Example. We are able to use this idea to find many new examples of mea-
surable sets.

1. Every countable set of reals is measurable.

2. The set of irrational numbers is measurable.

3. If An is a measurable set of reals for each n P N, then
Ş8
n“0An is

measurable.
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2.2.1 Borel sets

We now define a class of sets called Borel sets which are “always measurable”
(for any reasonable measure). It is worth noting that there are measurable
sets2 which are not Borel. However, Borel sets are those which must be
measurable whenever open intervals are measurable.

Definition 11. Suppose X Ď R. X is Borel if it belongs to every σ-algebra
over R that contains all the open subsets of R.

Remarks:

1. Every open set is Borel.

2. If X is a Borel set of reals, then Xc is Borel.

3. If Xn is a Borel set of reals for each each n P N, then
Ť8
n“0Xn and

Ş8
n“0Xn are Borel.

Examples:

2Here, we mean measurable with respect to the Lebesgue measure.
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1. If x P R, then txu is Borel. Proof: txu “ pp´8, xq Y px,8qqc.

2. Every countable set of reals is Borel.

3. The set of rational numbers is Borel, and the set of irrational numbers
is Borel.

4. pa, bs is Borel if a, b are real numbers such that a ă b.

Intuitively, the Borel sets are those which you can obtain by taking
countable unions, intersections and complements of open sets, all of which
preserve measurability. It is possible to explore the structure of these sets in
a much deeper way. In particular, it turns out there is a hierarchy of Borel
sets depending on how complicated they are (See Chapter 22 of [Kec12] for
a background on this). However, we will not need to discuss this topic in
this class.

We now show that Borel sets are always measurable. This fact should
not be surprising. However, there is still some work to do for this since we
haven’t yet shown that open intervals are measurable.

Theorem 5. Every Borel set of reals is measurable.

To prove this, we only must show that every open set is measurable. In
fact, we need only show that if a ă b, the open interval pa, bq is measurable
(since every open set is the countable union of disjoint intervals). Going
further, it suffices to show that if a P R, that the two sets

p´8, aq and pa,8q

are measurable (Exercise: why?), so that’s what we are going to do.

Lemma 4. If a P R, the set p´8, aq is measurable.

Proof. Suppose a P R and X Ď R. We need to show that

m˚pXq ě m˚pX X p´8, aqq `m˚pX X ra,8qq.

Note that

m˚pX X ra,8qq ď m˚pX X pa,8qq `m˚pX X tauq,

by sub-additivity but the latter term is zero, and thus

m˚pX X ra,8qq “ m˚pX X pa,8qq.
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Now we show that

m˚pXq “ m˚pX X p´8, aqq
loooooooooomoooooooooon

X1

`m˚pX X pa,8qq
looooooooomooooooooon

X2

Since outer measure is monotonic, we can assume that both X1 and X2

are non-empty (or else our job is already done). Now we take r ą m˚pXq.
Then there is a non-empty set U Ď R such that X Ă U and r ą `pUq. Let

U1 “ U X p´8, aq and U2 “ U X pa,8q.

Then U1 and U2 are both non-empty and `pUq “ `pU1q` `pU2q. (For the
latter claim, see the solution to problem 6 on homework 1).

But `pU1q ě m˚pXXp´8, aqq, by definition and `pU2q ě m˚pXXpa,8qq,
so r ě m˚pX X p´8, aqq `m˚pX X pa,8qq for all r ą m˚pXq.

Thus,
m˚pXq ě m˚pX X p´8, aqq `m˚pX X pa,8qq.

2.3 Approximating Measurable Sets

We now turn our attention to approximating measurable sets. These approx-
imations will be essential when we start using measure theory to compute
integrals. To do so, we define the notions of Gδ and Fσ sets, which are used
as outer and inner approximations of measurable sets, respectively.

Definition 12. Let X Ď R.

1. X is Gδ if it is the intersection of a countable family of open sets.

2. X is Fσ if it is the union of a countable family of closed sets.

Remarks:

1. If X Ď R, then X is Gδ if and only if Xc is Fσ.

2. If X is a Gδ set of reals, then there is an increasing sequence of open
sets of reals tUnu

8
n“0 so that X “

Ş8
n“0 Un. If X is an Fσ set of reals,

then there is a decreasing sequence of closed sets of reals tCnu
8
n“0 so

that X “
Ť8
n“0Cn.

Before discussing these sets in detail, let’s see a few examples
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Example. 1. The set of rational numbers is an Fσ set. Namely,

Q “
ď

qPQ
tqu.

2. Therefore the set of irrational numbers is a Gδ set.

3. If a, b are real numbers so that a ă b, then pa, bs is a Gδ set. Proof:

pa, bs “
č

nPN
pa, b` 2´nq.

4. Every open interval is both Gδ and Fσ. Proof: every open set is Gδ.
If I is an open interval, then

I “
ď

a,bPIXQ
ra, bs.

However, not every set will be Gδ. For instance, Q is not Gδ.

Proof. Suppose that it were. In other words, suppose Q “
Ş8
n“0 Un where

Un is an open set of reals for each n P N. Let tqnu
8
n“0 be an enumeration

of the rational numbers. Thus, Un ´ tqnu is open and dense for each n P N.
So, by the Baire Category Theorem

Ş8
n“0pUn ´ tqnuq is dense. But, this

intersection is empty- a contradiction.

In order to use Gδ and Fσ sets to approximate measurable sets, we must
first establish the following excision property.

Lemma 5. If X is a measurable set of reals that has finite outer measure,
and if Y is a set of reals that includes X, then

m˚pY ´Xq “ m˚pY q ´m˚pXq.

Proof. Suppose X is a measurable set of reals and m˚pXq ă 8. Suppose
R Ě Y Ě X. Since X is measurable,

m˚pY q “ m˚pY XXq `m˚pY XXcq “ m˚pXq `m˚pY ´Xq.

Thus, since m˚pXq ă 8, m˚pY q ´m˚pXq “ m˚pY ´Xq.

Using this lemma, we are finally able to prove the simple fact that the
outer measure of an open set is its length.
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Lemma 6. If U is a non-empty open set of reals, then m˚pUq “ `pUq.

Proof. Suppose U is a non-empty open set of reals.
Let

S “ t`pV q : R Ě V Ě U | V ‰ H is openu.

Thus, m˚pUq “ infpSq. Since `pUq P S, m˚pUq ď `pUq. If V is a non-empty
open set of reals that includes U , then `pV q ě `pUq (See solution to problem
6 homework 1). Thus, m˚pUq ě `pUq.

We can now describe the relationship between measurable sets and their
approximations.

Theorem 6. Let X Ď R. Then, the following are equivalent.

1. X is measurable.

2. For every ε ą 0, there is an open U Ď R so that X Ď U and m˚ ˚ pU ´
Xq ă ε.

3. There is a Gδ set of reals V so that V Ě X and so that m˚pV ´Xq “ 0.

4. For every ε ą 0, there is a closed C Ď R so that X Ě C and so that
m˚pX ´ Cq ă ε.

5. There is an Fσ set of reals V so that V Ď X and m˚pX ´ V q “ 0.

Proving this is somewhat tedious, but it’s not too hard.

Proof. Proof:
(1) ñ (2): Suppose X is measurable. Let ε ą 0.

Case 1: m˚pXq ă 8.

By the definition of outer measure, there is a non-empty open set of
reals U so that `pUq ă m˚pXq ` ε and so that U Ě X. Since m˚pXq ă 8,
`pUq ´m˚pXq ă ε. By Lemma 6, `pUq “ m˚pUq. Since X is measurable,
by Lemma 5, m˚pU ´Xq “ m˚pUq ´m˚pXq. So, m˚pU ´Xq ă ε.

Case 2: m˚pXq “ 8.

For each n P N, let Xn “ X X p´n, nq. Thus, X “
Ť

nXn. For each
n P N, m˚pXnq ď m˚pp´n, nqq ă 8 since outer measure is monotonic.
By Case 1, for each n P N there is an open set of reals Un Ě Xn so that
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m˚pUn ´Xnq ă ε2´pn`1q. Set U “
Ť

n Un. Then, U ´X Ď
Ť

npUn ´Xnq.
So,

m˚pU ´Xq ď m˚p
ď

n

Un ´Xnq ă

8
ÿ

n“0

ε2´pn`1q “ ε.

(2) ñ (3): Suppose (2). Then, for each n P N, there is an open set of
reals Un so that Un Ě X and so that m˚pUn ´Xq ă 2´n. Set V “

Ş

n Un.
So, for each n P N,

m˚pV ´Xq ď m˚pUn ´Xq ă 2´n.

Thus, m˚pV ´Xq “ 0.

(3) ñ (1): Suppose there is a Gδ set V so that V Ě X and m˚pV ´Xq “
0. Thus, V is Borel and so V is measurable. Since m˚pV ´Xq “ 0, V ´X
is measurable. Since pV ´Xqc “ V c YX, X “ V X pV ´Xqc. Thus, X is
measurable.

The remaining implications are now proved by taking complements.

We can now show that measurable sets are open intervals, modulo a set
of small measure.

Theorem 7. Suppose X is a measurable set of reals whose outer measure
is finite. Then, for every ε ą 0, there are open intervals I0, . . . , Ik so that
m˚pX∆

Ťk
n“0 Inq ă ε and so that pI0, . . . , Ikq is pairwise disjoint.

Proof. Let ε ą 0. By Theorem 6, there is an open set of reals U so that
U Ě X and so that m˚pU ´ Xq ă ε{2. There is a countable and pairwise
disjoint family of open intervals tIjujPF so that U “

Ť

jPF Ij .

Claim 1: `pUq ă 8.

Proof Claim 1: Since m˚pUq ď m˚pU ´Xq`m˚pXq ă ε{2`m˚pXq and
m˚pXq ă 8, m˚pUq ă 8. By Lemma 6, m˚pUq “ `pUq.

Claim 2: There is a finite F1 Ď F so that
ř

jPF´F1
m˚pIjq ă ε{2.

Proof of Claim 2: Since
ř

jPF `pIjq “ `pUq ă 8.

Claim 3: m˚pX∆
Ť

jPF1
Ijq ă ε.
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Proof of Claim 3: By monotonicity of outer measure and Claim 2:

m˚p
ď

jPF1

Ij ´Xq ď m˚pU ´Xq ă ε{2

m˚pX ´
ď

jPF1

Ijq ď m˚pU ´
ď

jPF1

Ijq ă ε{2

By the countable subadditivity of m˚

m˚pX∆
ď

jPF1

Ijq ă ε.

2.3.0.1 The Vitali covering lemma

Before defining the Lebesgue measure, let us also provide the Vitali covering
lemma, which will be quite useful later in the course.

Definition 13. An interval is degenerate if it consists of a single point.

Definition 14. Suppose E Ď R. Suppose F is a set of intervals that are
closed, bounded, and non-degenerate. F is a Vitali covering of E if for every
x P E and every ε ą 0 there is an interval I P F so that x P I and `pIq ă ε.

Here are some examples and non-examples of Vitali coverings.

1. tr´1, 2su is a covering of r0, 1s but not a Vitali covering.

2. trx ´ 2´n, x ` 2´ns : x P r0, 1s and n P Nu is a Vitali covering of
r0, 1s.

Lemma 7 (Vitali Covering Lemma). Suppose E is a set of reals and m˚pEq ă
8. Suppose F is a Vitali covering of E. Then, for every ε ą 0, there exist
I0, . . . , In P F so that pI0, . . . , Inq is pairwise disjoint and so that

m˚pE ´
n
ď

k“0

Ijq ă ε.

Proof. Case 1: There exist I0, . . . , In P F so that E Ď
Ťn
j“0 Ij and so that

pI0, . . . , Inq is pairwise disjoint.

In this case, there is nothing to prove and we are done.
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Case 2: There do not exist I0, . . . , In P F so that E Ď
Ťn
j“0 Ij and so

that pI0, . . . , Inq is pairwise disjoint.

By the definition of outer measure, there is an open set U Ě E so that
`pUq ă 8. Let F 1 “ tI P F : I Ď Uu.

Claim 1: F 1 is a Vitali covering of E.

Proof: Exercise.

Claim 2: If I0, . . . , In P F 1, and if pI0, . . . , Inq is pairwise disjoint, then
there exists I P F 1 so that I X

Ťn
j“0 Ij “ H.

Proof: Exercise.

We inductively define a sequence of intervals in F 1 as follows. Let I0 be
any interval in F 1. Assume I0, . . . , In have been defined. Let

Fn “ tI P F 1 : I X
n
ď

j“0

Ij “ Hu.

By Claim 2, Fn is nonempty. Let sn “ supt`pIq : I P Fnu. Since I Ď U
for each I P F 1, sn ă 8. So, there exists I P Fn such that `pIq ą sn{2; let
In`1 denote such an interval.

Note that tInu
8
n“0 is pairwise disjoint.

Claim 3:
ř8
n“0 `pInq ă 8.

Proof Claim 3: µp
Ť8
n“0 Inq ď µpUq ă 8. By countable additivity,

µp
Ť8
n“0 Inq “

ř8
n“0 `pInq.

Thus, limnÑ8 `pInq “ 0.

For each n P N, let cn “ center of In and let rn “ radius In. i.e.
In “ rcn ´ rn, cn ` rns. Let Jn “ rcn ´ 5rn, cn ` 5rns. Thus, `pJnq “ 5`pInq.

Claim 4: For every n P N, E ´
Ťn
k“0 Ik Ď

Ť8
k“n`1 Jk.

Proof Claim 4: Let x P E ´
Ťn
k“0 Ik. There is a δ ą 0 so that

px´δ, x`δqX
Ťn
k“0 Ik “ H. There is an I P F 1 so that x P I Ď px´δ, x`δq.
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Thus, I P Fn.

Subclaim 4.1: There exists n0 so that I X In0 ‰ H.

Proof of Subclaim 4.1: Suppose not. Then, I P Fn0 for all n0. Thus,
`pIn`1q ą `pIq{2 ą 0 for all n. Thus, limnÑ8 `pInq ‰ 0- a contradiction.

Choose the least such n0. Therefore, n0 ą n. Also, I P Fn0´1, so
`pIn0q ą `pIq{2.

Subclaim 4.2: x P Jn0 .

Proof of Subclaim 4.2: By Subclaim 4.1, there is a point x0 P I X In0 .
Then,

|x´ x0| ď `pIq ă 2`pIn0q

and thus
x0 ´ xn0 ď `pIn0q{2.

So, |x´ xn0 | ď 4rn0 ` rn0 “ 5rn0 , which implies x P Jn0 .

This proves Claim 4.

Now, let ε ą 0. There exists n so that

8
ÿ

k“n`1

`pIkq ă ε{5.

Since µpJkq “ 5µpIkq, we find that

µp
8
ď

n“k`1

Jnq ă ε.

So, by Claim 4,

µpE ´
n
ď

k“0

Ikq ă ε.
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2.4 The Lebesgue Measure

With all these preliminaries taken care of, we are finally able to define the
notion of the Lebesgue measure.

Definition 15. If E is a measurable set of reals, then the outer measure of
E is also called the measure of E and is denoted µpEq.

From our previous examples, there are a few sets which we can immedi-
ately measure.

Example. 1. The Lebesgue measure of an interval is its length.

2. µpQq “ 0.

Before moving on to proving some properties of the Lebesgue measure,
let’s solve a problem from a past qualifying exam.

Exercise 7 (2000 Qual Problem 1). 1. Define the measure µ on the Borel-
σ-algebra of R by µpAq “ λpA X p0, 1qq for Borel sets A. (λ “ Lebesgue
measure) Let

K “
č

tA : A is a closed set such that µpAq “ 1u

and
D “

č

tG : G is an open set such that µpGq “ 1u

Determine precisely which points belong to K and D and prove your claim.

2.4.1 Countable Additivity

The Lebesgue measure has the advantage of being countable additive, which
was the entire reason that we needed to discuss measurable sets.

Theorem 8 (Countable Additivity). : If tEnu
8
n“0 is a pairwise disjoint

sequence of measurable sets of reals, then µp
Ť8
n“0Enq “

ř8
n“0 µpEnq.

Proof. Suppose tEnu
8
n“0 is a pairwise disjoint sequence of measurable sets

of reals.

Claim 1: µp
Ť8
n“0Enq ď

ř8
n“0 µpEnq.

This holds since outer measure is countably subadditive.
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Claim 2: For each m P N, µp
Ť8
n“0Enq ě

řm
n“0 µpEnq.

To establish this, we use the finite additivity. Let m P N. Set A “
Ťm
n“0En. By Lemma 2,

µpAX
m
ď

n“0

Enq “
m
ÿ

n“0

µpAX Enq.

But, A X
Ťm
n“0En “

Ťm
n“0En and A X En “ En. Since outer measure is

monotonic,

µp
m
ď

n“0

Enq ď µp
8
ď

n“0

Enq.

Claim 3: µp
Ť8
n“0Enq ě

ř8
n“0 µpEnq.

To see this, apply Claim 2 and take limits.

As a corollary, we immediately obtain finite additivity as well.

Corollary 2. If E0, . . . , Em are measurable sets of reals, and if pE0, . . . , Emq
is pairwise disjoint, then µp

Ťm
n“0Enq “

řm
n“0 µpEnq.

We also obtain the measure of the difference of sets is the difference of
measures.

Corollary 3. Suppose X,Y are measurable sets of reals so that Y Ě X and
so that µpXq ă 8. Then, µpY ´Xq “ µpY q ´ µpXq.

Proof. By Corollary 2, µpY q “ µpY ´Xq `µpXq. Since µpXq ă 8, µpY q ´
µpXq “ µpY ´Xq.

2.4.2 Continuity of measure

The Lebesgue measure has another desirable property, which is that it is
continuous with respect to increasing and decreasing sequences of sets.

Theorem 9 (Continuity of measure). Suppose tEnu
8
n“0 is a sequence of

measurable sets of reals.

1. If En Ď En`1 for all n P N, then µp
Ť8
n“0Enq “ limmÑ8Em.
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2. If En Ě En`1 for all n P N, and if µpE0q ă 8, then µp
Ş8
n“0Enq “

limmÑ8 µpEmq.

Proof. (1): Suppose En Ď En`1 for all n P N.

Case 1: µpEmq “ 8 for some m.

By monotonicity of outer measure, µp
Ť8
n“0Enq “ 8. By monotonicity

of outer measure, µpEnq “ 8 for all n ą m. Thus, limnÑ8 µpEnq “ 8.

Case 2: µpEmq ă 8 for all m.

We have
Ť8
n“0En “ E0 Y

Ť8
n“0 µpEn`1 ´ Enq. By Theorem 8,

µpE0 Y

8
ď

n“0

µpEn`1 ´ Enqq “ µpE0q `

8
ÿ

n“0

µpEn`1 ´ Enq.

By Corollary 3, µpEn`1 ´ Enq “ µpEn`1q ´ µpEnq for all n. Thus,

8
ÿ

n“0

µpEn`1 ´ Enq “
8
ÿ

n“0

µpEn`1q ´ µpEnq “ lim
nÑ8

µpEnq ´ µpE0q.

Thus, µp
Ť8
n“0Enq “ limnÑ8 µpEnq.

(2): Suppose En Ě En`1 for all n P N and µpE0q ă 8. Thus, µpEnq ă 8
for all n P N and µp

Ş8
n“0Enq ă 8. Also, E0´En Ď E0´En`1 for all n P N.

Then, using the previous argument ( Part 1),

µp
8
ď

n“0

E0 ´ Enq “ lim
nÑ8

µpE0 ´ Enq.

However,
Ť8
n“0E0 ´ En “ E0 ´

Ş8
n“0En. By Corollary 3,

µpE0 ´

8
č

n“0

Enq “ µpE0q ´ µp
8
č

n“0

Enq and µpE0 ´ Enq “ µpE0q ´ µpEnq.

As a result, we find that

µp
8
č

n“0

Enq “ lim
nÑ8

µpEnq.
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2.4.3 Everywhere and Almost Everywhere

Measure theory is a powerful tool for measuring the size of sets. However,
as we have seen it is possible for a non-empty set to have non-zero measure
and the Lebesgue measure is unable to distinguish these sets from the empty
set. As such, for the rest of the course, we will often talk about properties
that hold almost everywhere, as opposed to those that hold everywhere.

Definition 16. We say that a property holds almost everywhere in a set E
if the set of all x P E so that the property fails has measure 0. The set of
all x where the property fails is called an exceptional set.

Example. Almost all real numbers are irrational.

The following lemma is extremely important.

Lemma 8 (Borel-Cantelli). Suppose tAnu
8
n“0 is a sequence of measurable

sets of reals so that
ř8
n“0 µpAnq ă 8. Then, almost every real number

belongs to only finitely many An’s. i.e. the measure of

tx P R : x P An for infinitely many nu

is zero.

Proof. Let
E “ tx P R : x P An for infinitely many nu.

We need to show that µpEq “ 0. Note that x P E if and only if for every
n P N there exists m ě n so that x P Am. So:

E “
8
č

n“0

8
ď

m“n

Am

Note that
Ť

m“nAm Ě
Ť

m“n`1Am. Since
ř8
n“0 µpAnq ă 8, µp

Ť8
n“0Anq ă

8. So by Theorem 2,

µpEq “ lim
nÑ8

µp
8
ď

m“n

Amq.

However,

µp
8
ď

m“n

Amq ď
8
ÿ

m“n

µpAmq.

Since
ř8
m“0 µpAmq ă 8,

lim
nÑ8

8
ÿ

m“n

µpAmq “ 0.

Thus, µpEq “ 0.
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2.5 Non-Measurable Sets

Most sets that we encounter “in the wild” are Borel sets, and thus measur-
able. However, there is certainly some sampling bias going on here, because
in some sense, “most” sets are non-measurable3.

Constructing non-measurable sets requires some work, so we take a brief
moment to review equivalence relations. Let us first introduce some nota-
tion.

Definition 17. Suppose X is a set, and suppose „ is an equivalence relation
on X.

1. For each c P X, let rcs„ “ the „-equivalence class of c.

2. X{ „ denotes the set of all „-equivalence classes.

Definition 18. Suppose X is a set, and suppose „ is an equivalence relation
on X. A system of representatives for „ is a set R Ď X so that each „-
equivalence class contains exactly one element of R.

Example. Let n be a positive integer. Let „ denote the equivalence modulo
n relation on Z. Then t0, . . . , n ´ 1u is a system of representatives for „.
t1, . . . , nu is also a system of representatives for „.

The relationship between equivalence classes and system of representa-
tives quickly leads down the rabbit hole of foundational issues.

Question 1. Does every equivalence relation have a system of representa-
tives?

Definition 19 (Axiom of Choice). If X is a nonempty set, then there is a
function F : PpXq Ñ X so that F pY q P Y for each Y P PpXq.

With this axiom, we can find a system of representatives for any equiv-
alent relation.

Corollary 4. Assuming the Axiom of Choice, every equivalence relation has
a system of representatives.

Proof. Suppose X is a set and „ is an equivalence relation on X. If X “ H,
then H is a set of representatives for „. Let F : PpXq Ñ X be a function
so that F pY q P Y for each Y P PpXq. Let R “ F rX{ „s. We claim that

3At least if we assume the axiom of choice.
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R is a system of representatives for „. For, let a be a „-equivalence class.
Then, F paq P a. Suppose c P R and c ‰ F paq. There exists b P F { „ so
that F pbq “ c. Thus, b ‰ a. Therefore, bX a “ H. Since c P b, c R a. So,
a contains exactly one element of R.

The reason to consider equivalence relationships and systems of repre-
sentatives is that it allows us to construct non-measurable sets.

Definition 20. When x, y P R, write x „Q y if y ´ x P Q.

Note that „Q is an equivalence relation on R.

Proposition 10. Suppose R is a system of representatives for „Q. Then,
q `RX q1 `R “ H whenever q, q1 are rational numbers so that q ‰ q1.

Proof. Suppose q, q1 P Q and that q ` R X q1 ` R ‰ H. Then, there exist
c, c1 P R so that q ` c “ q1 ` c1. Thus, q ´ q1 “ c1 ´ c. Thus, c „Q c1. Since
R is a system of representatives for „Q, c “ c1. Thus, q “ q1.

Theorem 11. Every system of representatives for „Q is non-measurable.

Proof. Let R be a set of representatives for „Q. By way of contradiction,
suppose R is measurable. Let Sn “ RXr´n, ns. Then, Sn is measurable for
each n P N. Also,

R “
ď

λPQ
λ`R “

ď

λPQ

8
ď

n“0

λ` Sn “
8
ď

m“0

ď

λPQXr´m,ms

8
ď

n“0

λ` Sn.

We start by showing that if Sn was measurable, then µpSnq “ 0 for every
n P N.

Proof of Claim: Let n P N. Then,
Ť

λPQXr´1,1s λ`Sn Ď r´pn`1q, n`1s.
So,

µp
ď

λPQXr´1,1s
λ` Sn Ď r´pn` 1q, n` 1sq ă 8

Thus, by Proposition 10,
ÿ

λPQXr´1,1s
µpλ` Snq ă 8

Since outer measure is translation-invariant:
ÿ

λPQXr´1,1s
µpSnq “ 0
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Therefore, µpSnq “ 0.

From this, we see that µpRq “ 0, which is a contradiction.

As a result, if we assume the axiom of choice, we find that non-measurable
sets exist.

Corollary 5. There is a non-measurable set of reals.

Proof. By Corollary 4, there is a system of representatives for „Q. By
Theorem 11, such a system is non-measurable.

Using this, we can finally go back to show why the outer measure fails
finite additivity

Corollary 6. There exist A,B Ď R so that AXB “ H and m˚pAYBq ă
m˚pAq `m˚pBq.

Proof. Let E be a non-measurable set of reals. Then, there is a set of reals
X so that m˚pXq ă m˚pE XXq `m˚pEc XXq.

Proposition 12 (Vitali). Every set with positive outer measure includes a
non-measurable set.

Proof. Exercise.

2.5.0.1 Some remarks on non-measurable sets

The existence of measurable sets is an extremely thorny issue which is deeply
tied to foundational issues. In fact, Robert Solovay constructed a model (in
the sense of mathematical logic) of the real numbers where all subsets are
Lebesgue measurable [Sol70]. For this, he used the Zermelo Frenkel axioms
with an extra axiom on existence of an inaccessible cardinal. The technical
details are outside the scope of this course, but heuristically what this shows
is that the existence of non-measurable sets is very nearly equivalent to the
axiom of choice.

Historically, this phenomena, along with a higher-dimensional version
called the Banach-Tarski paradox4 lead many mathematicians to reject the
axiom of choice altogether.

4The Banach-Tarski paradox decomposes a solid ball into 5 pieces and then rotates
and translates the pieces into two solid balls of the same radius. This construction heavily
relies on the axiom of choice and non-measurable sets.
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For modern functional analysis, trying to avoid the axiom of choice or
the Banach-Tarski paradox is extremely restrictive, because you have to dis-
card the Hahn-Banach theorem [FW91], which is one of the most important
results in partial differential equations.

My advice is to not worry too much about the axiom of choice unless
you are interested in mathematical logic. In my experience, non-measurable
sets and other foundational matters don’t show up unless you go looking
for them, so it is perfectly possible (and acceptable) for a mathematician to
consider such issues only in a superficial way.

2.6 The Cantor Set

We have seen that all countable sets have zero measure and that all Borel
sets are measurable. It is natural to ask whether the converse of these results
hold. In both cases, the answer is no, and we can see this by studying the
Cantor set.

There are several ways to define this set, so we will provide two.

Definition 21 (Cantor set - ternary expansion definition). The Cantor mid-
dle third set consists of all numbers in r0, 1s that have a ternary expansion
consisting of 0’s and 2’s. That is, x belongs to the Cantor middle third
set if and only if there is a sequence tanu

8
n“0 so that x “

ř8
n“0

an
3n`1 and

an P t0, 2u for all n P N. We denote this set by C.

Definition 22 (Cantor set - intersection definition). Consider the closed
interval I “ r0, 1s and remove the open set p13 ,

2
3q. Set

C1 “ I ´

ˆ

1

3
,
2

3

˙

“

„

0,
1

3



Y

„

2

3
, 1



.

Repeat the process of removing the middle third from each set to obtain

C2 “ C1 ´

ˆ

p
1

9
,
2

9
q Y p

7

9
,
8

9
q

˙

“

„

0,
1

9



Y

„

2

9
,
1

3



Y

„

2

3
,
7

9



Y

„

8

9
, 1



.

Cn is the disjoint union of 2n closed intervals of length 3´n. We then
define the Cantor set to be

C “

8
č

n“1

Cn.

Exercise 8. Show that these two definitions of the Cantor set agree.
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Figure 2.1: The Cantor Set

Exercise 9. Show that 1
4 is in the Cantor set.

Proposition 13. C is a closed set whose measure is zero.

Proof. C is closed since it is the intersection of closed sets. It has measure
zero since C Ă Cn for all n and thus

µpCq ď µpCnq “
2n

3n
.

Exercise 10. Show that C is uncountable.

Hint: Use the ternary definition and consider the map sending a num-
ber x written in ternary as .a1a2a3 . . . to the number written in binary as
.a12

a2
2
a3
2 . . .

Exercise 11. Use the Cantor set to construct a dense uncountable set of
real numbers with measure zero.

39



2.6.1 Counting subsets

The Cantor set gives an example of an uncountable set with measure zero.
However, we can also use it to “construct” a Lebesgue measurable set which
is not Borel.

Proposition 14. Any subset of the Cantor set is measurable.

Proof. By the monotonicity of the Lebesgue measure, any subset of the
Cantor set has measure zero.

To see that this implies that there are Lebesgue measurable sets which
are not Borel, we can count the number of subsets of the Cantor sets, of
which there are

#pPpCqq “ #pPpRqq “ 2p#Rq.

On the other hand, there are #R open subsets of R (exercise: why?)
and every Borel set is constructed from countable intersections and unions
of open sets. Using transfinite induction and these two facts, it is possible
to show that there are #R Borel sets.

We will revisit the Cantor set in the next chapter to provide counterex-
amples for some intuitive ideas about continuous functions, their derivatives
and measures.
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Chapter 3

Measurable Functions

We now turn our attention to measurable functions in order to lay the
foundations for the Lebesgue integral. The basic idea is to define it in a
similar way to continuity, but there are some subtleties.

Definition 23. A function f : X Ñ Y is continuous if the pre-image of
any open set f´1pUq is open.

Definition 24. A function f : E Ñ R (or r´8,8s) is measurable if the
preimage of any open set f´1pUq is Lebesgue-measurable.

By considering f´1pRq, we can immediately see that the domain of the
function E must be measurable. We also see that every continuous real-
valued function on R is measurable.

Proposition 15. Suppose E is a measurable set of reals and f : E Ñ

r´8,8s. Then, the following are equivalent..

1. f is measurable.

2. f´1rpa,8ss is measurable for every a P R.

3. f´1rr´8, aqs is measurable for every a P R.

4. f´1rra,8ss is measurable for every a P R.

5. f´1rr´8, ass is measurable for every a P R.

Proof. (Sketch) By definition, 1 implies all the other statements. If any of
2 - 5 hold, then by considering complements, countable unions, and finite
intersections, it follows that f is measurable.
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As an immediate consequence, we see the following corollary.

Corollary 7. Suppose f : E Ñ r´8,8s is measurable. Then the preimage
f´1pUq of any Borel set is measurable.

3.0.1 A brief remark on σ-algebras

Much in the same way that we can use function(al)s to induce a topology (by
considering the coarsest topology in which a function (or family of functions)
is continuous, we can use functions to construct sigma algebras. This idea
will not be used heavily in this class, but if you are interested in stochastic
calculus or financial math, you will see it there.

Proposition 16. Suppose f : E Ñ R is a measurable function. Let S “
tX Ď R : f´1rXs is measurableu. Then, S is a σ-algebra over R.

Proof. Since f´1rRs “ E, and since E is measurable, R P S.
If f´1rXs is measurable, then f´1rXcs “ E ´ f´1rXs is measurable.

So, S is closed under complementation. If f´1rAns is measurable for each
n P N, then f´1r

Ť8
n“0Ans “

Ť8
n“0 f

´1rAns is measurable. So, S is closed
under countable unions.

Now back to the regularly scheduled programming. . .

3.1 Sums, products, pointwise limits, etc.

We now show that some natural ways to combine measurable functions
produce more measurable functions.

Theorem 17. If f : E Ñ r´8,8s is continuous, and if E is measurable,
then f is measurable.

Proof. Let U Ď r´8,8s be an open set of reals. Since f is continuous,
there is an open set V so that f´1rU s “ V XE. Since V,E are measurable,
V X E is measurable.

Lemma 9. Suppose f : E Ñ r´8,8s and g : E Ñ r´8,8s are equal
almost everywhere (i.e. µptt P E : fptq ‰ gptqu. If f is measurable, then g
is measurable.

Proof. Suppose f is measurable. Let E “ tx P E : fpxq ‰ gpxqu. Then, for
every U Ď r´8,8s,

g´1rU s “ f´1rU s X pR´ Eq Y g´1rU s X E .
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Suppose U is open. Then, f´1rU s is measurable. Since E “ 0, g´1rU s X E
is measurable. Thus, g´1rU s is measurable.

Proposition 18. Suppose f : E1 Ñ r´8,8s is measurable and g : E2 Ñ

r´8,8s is continuous. Suppose E2 is open and E2 Ě ranpfq. Then, g ˝ f
is measurable.

Proof. Suppose U Ď r´8,8s is open. Then, pg ˝ fq´1rU s “ f´1rg´1rU ss.
Thus, g´1rU s is open. Thus, pg ˝ fq´1rU s is measurable.

Theorem 19. Suppose f : E Ñ r´8,8s and g : E Ñ r´8,8s are mea-
surable. Suppose also that f and g are finite almost everywhere. Then, fg
is measurable and αf ` βg is measurable for all α, β P R.

Proof. By Lemma 9, we can assume that f and g are real-valued.

Claim 1: f ` g is measurable.

Proof Claim 1: Set h “ f ` g. Let a P R.

We have:

hpxq P pa,8s ðñ fpxq ` gpxq ą a

ðñ fpxq ą a´ gpxq

ðñ Dq P Q fpxq ą q ą a´ gpxq

ðñ Dq P Q fpxq ą q and gpxq ą a´ q

So,
h´1rpa,8ss “

ď

qPQ
f´1rpq,8ss X g´1rpa´ q,8ss.

Thus, h´1rpa,8ss is measurable. Thus, by Proposition 15, h is measurable.
Claim 2: αf is measurable.

Proof of Claim 2: Set gpxq “ αx. Then, αf “ g ˝ f . Apply Proposition
18.

Claim 3: fg measurable.
Proof Claim 3: fg “ 1

2 rpf ` gq
2´ pf ´ gq2s. By Proposition 18, pf ` gq2

and pf ´ gq2 are measurable.

Definition 25. Suppose f : E Ñ r´8,8s and g : E Ñ r´8,8s. Then, for
all x P R, maxtf, gupxq “ maxtfpxq, gpxqu and mintf, gupxq “ mintfpxq, gpxqu.
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In other words, maxtf, gupxq is simply the larger of fpxq and gpxq and
conversely for mintf, gupxq.

Definition 26. Suppose f : E Ñ r´8,8s. The positive part of f , denoted
f` is defined as f` “ maxtf, 0u. The negative part of f , denoted f´, is
defined f´ “ ´mintf, 0u.

Proposition 20. Suppose f : E Ñ r´8,8s and g : E Ñ r´8,8s. Sup-
pose f, g are measurable and finite almost everywhere. Then, maxtf, gu and
mintf, gu are measurable.

In fact, it is possible to prove this result without assuming that f and g
are finite almost everywhere, but this will not be necessary for our purposes.

Proof. Set h “ maxtf, gu. Suppose U is an open subset of r´8,8s. Then,

h´1rU s “ tx P E : fpxq P U and fpxq ą gpxqu
ď

tx P E : gpxq P U and gpxq ě fpxqu

“ f´1rU s X pf ´ gq´1rp0,8ss
ď

g´1rU s X pg ´ fq´1rr´8, 0ss.

Since f ´ g and g ´ f are measurable, it follows that h´1rU s is measurable
if U is open. Thus, h is measurable.

mintf, gu “ ´maxt´f,´gu. Thus, mintf, gu is measurable.

Corollary 8. If f is measurable, then f` and f´ are measurable.

It is worth noting that these proofs would be easier were we able to
discuss measurability of higher dimensional sets (since max is naturally a
two-variable function). This is one of the downsides of sticking with one
variable, (the upside is that it is much easier to define the Lebesgue measure
on the real line compared to a higher dimensional space).

We now come to one of the most important facts about the measur-
able functions, which is that the pointwise limit of measurable functions is
measurable. Note that the pointwise limit of continuous functions may not
be continuous. It turns out that the pointwise limit of Riemann integrable
functions need not be Riemann integrable either, so this result will be one
of the major advantages of the Lebesgue integral.

Theorem 21. Suppose E is a measurable set of reals and that f, f0, f1, . . .
are extended real-valued functions on E so that f0, f1, . . . are measurable and
limnÑ8 fnpxq “ fpxq almost everywhere. Then, f is measurable.
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Proof. Let X “ tx P E : limnÑ8 fnpxq ‰ fpxqu. Suppose U Ď r´8,8s is
open. Then,

f´1rU s “ X X f´1rU s YXc X f´1rU s.

Suppose x R X. Then,

fpxq P U ô DN0 P N @n ě N0fnpxq P U

ô x P
8
ď

N0“0

8
č

n“N0

f´1n rU s.

So,

Xc X f´1rU s “ Xc X
ď

N0PN

8
č

n“N0

f´1n rU s.

Thus, f´1rU s is measurable.

Definition 27. Notation: fn Ñ f a.e. is shorthand for tfnu
8
n“0 converges to

f almost everywhere. fn Ñ f is shorthand for tfnu
8
n“0 converges pointwise

to f .

Finally, we note that the restriction of a measurable function to a mea-
surable sub-set is measurable.

Definition 28. f |E denotes the restriction of f to E when E Ď dompfq.
Namely,

f |Epxq “

"

fpxq if x P E
undefined otherwise

Proposition 22. If f is measurable, and if E is a measurable subset of the
domain of f , then f |E is measurable.

3.2 The Cantor Function and non-measurable func-
tions

In the previous section, we saw multiple ways to combine measurable func-
tions to obtain new measurable functions. However, there was a conspicuous
absence: composition.

Observation 1. The composition of measurable functions is not necessarily
measurable!

To see this, we will revisit the Cantor set and use it define the Cantor-
Lebesgue function.
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Definition 29. Suppose x P C, and let x “
ř8
n“0

an
3n`1 where an P t0, 2u for

all n P N. Define

φpxq “
8
ÿ

n“0

an{2

2n`1
.

Proposition 23. Suppose n0 P N. If x0, x1 P C, and if |x0 ´ x1| ă 3´n0,
then |φpx0q ´ φpx1q| ă 2´n0.

To obtain the full Cantor-Lebesgue function, we extend φ to r0, 1s as
follows. For each x P r0, 1s ´C, let

φpxq “ φpsuptx1 P C : x1 ă xuq.

φ is called the Cantor-Lebesgue function.
It is possible to calculate some values of this function explicitly.

1. If x P p13 ,
2
3q, then φpxq “ 1

2 .

2. If x P p79 ,
8
9q, then φpxq “ 3

4 .

We will now note some properties of this function

Proposition 24. If pa, bq Ď r0, 1s ´ C, then φ is constant on pa, bq and
φpaq “ φpbq.

Corollary 9. φ is non-decreasing.

Proposition 25. φ is continuous.

Proof. Let ε ą 0 Choose n0 P N so that 2´n0 ă ε. Suppose x0, x1 P r0, 1s
and |x0 ´ x1| ă 3´n0 .

Claim: |φpx0q ´ φpx1q| ă 2´n0 .
Proof Claim: WLOG x0 ă x1. Let:

x10 “ inftx P C : x0 ď xu

x11 “ suptx P C : x ď x1u

Thus, x10, x
1
1 P C. By Proposition 24, φpx10q “ φpx0q and φpx11q “ φpx1q.

Case 1: x10 ą x1 or x11 ă x0.

It follows that px0, x1q Ď r0, 1s´C. Thus, φpx0q “ φpx1q by Proposition
24.
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Figure 3.1: An approximation of the Cantor-Lebesgue function

47



Case 1: x10 ď x1 and x0 ď x11.

Thus, x10, x
1
1 P rx0, x1s. Therefore, |x10 ´ x11| ă 3´n0 . So, by Proposition

23, |φpx10q ´ φpx
1
1q| ă 2´n0 .

This proposition has the (perhaps surprising) consequence that φ is sur-
jective on r0, 1s

Corollary 10. ranpφq “ r0, 1s.

Proof. Since φp0q “ 0 and φp1q “ 1 and φ continuous.

The Cantor-Lebesgue function is continuous and increasing, but it will
be helpful to modify it so that it is strictly increasing. To do so, we define

ψpxq “ x` φpxq.

Observation 2. The functionψ is an increasing and continuous map of
r0, 1s onto r0, 2s.

Observation 3. The inverse function ψ´1 is continuous.

One somewhat surprising fact is that even though the Cantor set has
zero measure, its image under Ψ has positive measure.

Proposition 26. µpψrCsq “ 1.

Proof. Since ψ is one-to-one, r0, 2s “ ψrCsYψrr0, 1s´Cs. If pa, bq Ď r0, 1s´
C, then µrψrpa, bqss “ µppa, bqq. Thus, µpψrr0, 1s ´ Csq “ 1. Therefore,
µpψrCsq “ 1.

Proposition 27. There is a measurable A Ď r0, 1s so that ψrAs is non-
measurable.

Proof. Since ψrCs has positive measure, it includes a non-measurable set B.
Set A “ ψ´1rBs. Then, A Ď C. So, A is measurable.

Corollary 11. There is a non-measurable function.

Proof. Suppose A is a measurable subset of r0, 1s so that ψrAs is non-
measurable. Let h “ χA ˝ ψ

´1. Then, h´1rp12 ,
3
2qs “ ψrAs. Thus, h is

non-measurable.
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3.2.1 A remark for those interested in probability

The purpose of this subsection is to make some remarks on the Cantor-
Lebesgue function and its relation to probability. The reader is invited to
skip this section if they would like.

When one learns probability, one encounters many examples of proba-
bility measures (i.e., measures whose total mass is one). These generally fall
into two types.

1. The first type are those which are discrete and have probability mass
functions, such as the binomial distribution or negative binomial dis-
tribution. Such measures are called atomic, since they charge (i.e.,
give positive measure to) points.

2. The second type are measures such as normal distribution, which has
a probability density function

fpxq “
1
?

2π
e´

1
2
pxq2

and where the measure of a subset U can be computed as

ż

U
fpxq dx

(where this integral is done with respect to the Lebesgue measure).

It is tempting to intuitively think of measures as being some sort of lin-
ear combination of a continuous measure and an atomic measure. We will
not cover it in this class, but if you continue learning real analysis you will
encounter the Radon-Nikodym derivative (of which fpxq is an example) and
the Lebesgue decomposition theorem, which support this intuition. Intu-
itively, these results state that any reasonable1 measure can be decomposed
into a measure which has a probability density function (with respect to the
Lebesgue measure) and a measure which is singular (i.e., charges null sets).

However, it is important to realize that singular measures need not be
atomic. In particular, the Cantor-Lebesgue function can be understood
as a cumulative distribution function for a probability measure which is
supported on the Cantor set. Although this measure is Lebesgue singular
(since the Cantor set has measure zero), the fact that the Cantor-Lebesgue

1There is a technical assumption here that the measures be σ-finite, which we will see
at the very end of this class.
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function is continuous means that the measure is non-atomic. As such,
this is an important counter-example to keep in mind if you are studying
probability theory.

And now back to our regularly scheduled programming. . .

3.3 Approximating measurable functions

For Riemann integration, the general idea is to use step functions to ap-
proximate the desired function and then compute the area underneath the
step function. For the Lebesgue integral, we will instead approximate us-
ing simple functions. Intuitively, these functions cut horizontally instead of
vertically.

Definition 30. A simple function is a real-valued measurable function whose
range is finite.

Example. 1. The Heaviside function

fpxq “

#

1 x ą 0

0 x ă 0

2. The Dirichlet function

fpxq “

#

1 x P Q
0 x R Q

Definition 31. Suppose E Ď R. For each x P R let

χEpxq “

"

1 x P E
0 x R E

χE is called the characteristic function of E.

If E is measurable, then χE is a simple function.

Proof. Suppose U Ď r´8,8s is open.

χ´1E rU s “

$

’

’

&

’

’

%

R 0, 1 P U
Ec 0 P U and 1 R U
E 0 R U and 1 P U
H 0, 1 R U
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It is not hard to show that every step function is also a simple function

Exercise 12. Show that every step function is a simple function.

There is an alternative characterization of simple function and the linear
combination of characteristic functions.

Proposition 28. A function φ : R Ñ R is simple if and only if there are
measurable sets E1, . . . , En Ď R and c1, . . . , cn P R so that

φ “
n
ÿ

j“1

cjχEj

Here is a quick sketch of the proof. For the forward direction, suppose
that φ simple. Let tc1, . . . , cnu “ ranpφq. Take Ej “ φ´1rtcjus. For the
reverse direction, note that the range of φ is finite. Since χEj is measurable,
by Theorem 19, we find that φ is measurable.

Theorem 29 (Simple Approximation Lemma). Suppose f : E Ñ R is a
bounded measurable function. Then, for every ε ą 0, there exist φ, ψ so that
φ and ψ are simple functions on E, , φ ď f ď ψ and ψ ´ φ ă ε.

Proof. Since f is bounded, there is a positive number M so that |fpxq| ăM
for all x P E. Choose n0 P N so that 2M2´n0 ă ε. Let cj “ ´M `

jp2Mq2´n0 , and let dj “ ´M ` pj ` 1qp2Mq2´n0 . Set Vj “ rcj , djq when
0 ď j ă 2n0 . Thus, r´M,Mq “

Ť

jă2n0 Vj . Note ranpfq Ď r´M,Mq. Set

Ej “ f´1rVjs. Therefore, Ej is measurable. Set:

φ1 “
ÿ

jă2n0

cjχEj

ψ1 “
ÿ

jă2n0

djχEj

By Proposition 28, φ1 and ψ1 are simple. Let φ “ φ1|E , and let ψ “ ψ1|E .
Thus, φ and ψ are simple and φ ď f ď ψ by construction. Let x P E. Then,
x P Ej for exactly one j. By construction, cj “ φpxq and dj “ ψpxq. But,
dj ´ cj “ 2M2´n0 ă ε.

In fact, we can prove a stronger approximation theorem as well.

Theorem 30. Suppose f : E Ñ r´8,8s and suppose E is measurable.
Then, f is measurable. if and only if there is a sequence of simple functions
on E tσnu

8
n“0 so that σn Ñ f a.e. and |σn| ď |f | for all n. If f ě 0, then

we can choose tσnu
8
n“0 to be non-decreasing.
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Figure 3.2: The simple functions are converging almost everywhere to the
function f : E Ñ R (depicted in purple). As a disclaimer, these are not the
precise functions that are constructed in the proofs of the simple approxi-
mation lemmas.

Proof. The reverse direction follows directly from Theorem 21, so it remains
to show the forward direction.

Case 1: f ě 0.

Set En “ f´1rr0, n` 1qs for every n P N. Set fn “ f ¨ χEn . Thus, fn is
measurable and bounded. By Theorem 29, there is a simple function φn so
that φn ď fn and fn ´ φn ă 2´n. Let

τnpxq “

"

φ`n pxq x P En
n` 1 x R En

Thus, τn is simple, and 0 ď τn ď f .

Claim: tτnu
8
n“0 converges pointwise to f .

Let x P E. Let ε ą 0. Choose N0 P N so that 2´N0 ă ε and fpxq ă N0.
Let n ě N0. Therefore, x P En. Thus, τnpxq “ φ`n pxq.

Subcase a: φnpxq ą 0.
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Then, τnpxq “ φnpxq and |fpxq ´ τnpxq| “ fpxq ´ φnpxq ă ε.

Subcase b φnpxq ď 0:

|fpxq ´ τnpxq| “ fpxq ď fnpxq ´ φnpxq ă ε.

Thus, limnÑ8 τnpxq “ fpxq.

Now, set σn “ maxjďn τj . Thus, σn is measurable. σn ď σn`1 by defini-
tion. τj ď f . Thus, 0 ď σn ď f . Since tτnu

8
n“0 converges pointwise to f , it

follows that tσnu
8
n“0 converges pointwise to f .

Case 2: f ğ 0.

By Case 1, there exist a sequence of simple functions tσ1,nu
8
n“0 that

converges pointwise to f` and so that 0 ď σ1,n ď f`. By Case 1, there is a
sequence of simple functions tσ2,nu

8
n“0 that converges pointwise to f´ and

so that 0 ď σ2,n ď f´. Set σn “ σ1,n ´ σ2,n. Since f “ f` ´ f´, tσnu
8
n“0

converges to f pointwise.

3.4 Littlewood’s three principles

The extent of knowledge required is nothing like so great as is
sometimes supposed. There are three principles, roughly ex-
pressible in the following terms: Every [measurable] set is nearly
a finite union of intervals; every [measurable] function is nearly
continuous; every pointwise convergent sequence of [measurable]
functions is nearly uniformly convergent. Most of the results of
[the theory] are fairly intuitive applications of these ideas, and
the student armed with them should be equal to most occasions
when real variable theory is called for. If one of the principles
would be the obvious means to settle the problem if it were ‘quite’
true, it is natural to ask if the ‘nearly’ is near enough, and for a
problem that is actually solvable it generally is.

J.E. Littlewood

At first, measure theory might seem to be an imposing and very technical
subject. However, Littlewood’s quote explains that measure theory only
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improves upon a naive approach to integration by ε (albeit a very important
ε).

We have already seen Littlewood’s first principle precisely. The Vitali
covering lemma (Theorem 7) shows that given a measurable set E of finite
measure, then for each ε ą 0, there is a finite collection of open intervals
whose union U is ”nearly equal to” E in the sense that

µpE ´ Uq ` µpU ´ Eq ă ε.

In this section, we will work towards making the other principles precise.

3.4.1 The third principle: Egoroff’s theorem

Here, we will show that pointwise convergence of measurable functions is
“nearly” uniform convergence. To do so, we start with the following lemma.

Lemma 10. Suppose µpEq ă 8, and suppose tfnu
8
n“0 is a sequence of

measurable functions on E that converges pointwise to a real-valued function
f . Then, for all ε1, ε2 ą 0 there exists N0 P N and a measurable A Ď E so
that µpE ´ Aq ă ε2 and so that |fpxq ´ fkpxq| ă ε1 whenever k ě N0 and
x P A.

Proof. Let ε1, ε2 ą 0 and for each N0 P N, let

EN0 “

8
č

n“N0

tx P E : |fnpxq ´ fpxq| ă ε1u

Since fn Ñ f ,
E “

ď

N0PN
EN0

Since EN0 Ď EN0`1,
lim

N0Ñ8
µpEN0q “ µpEq.

So, since µpEq ă 8, there is a non-negative integer N0 so that µpEq ´
µpEN0q ă ε2. Set A “ EN0 .

With this lemma in hand, we can now prove a somewhat surprising theo-
rem, that pointwise convergence is “nearly” the same as uniform convergence
for measurable functions.

Theorem 31. (Egoroff’s Theorem) Suppose µpEq ă 8 and tfnu
8
n“0 is a

sequence of measurable functions on E that converges pointwise to a real-
valued function f . Then, for every ε ą 0 there is a closed set F Ď E so that
tfnu

8
n“0 converges uniformly to f on F and µpE ´ F q ă ε.
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Proof. Let ε ą 0.

Claim 1: There is a measurable set A Ď E so that µpE ´ Aq ă ε{2 and
tfnu

8
n“0 converges uniformly to f on A.

Proof of Claim 1: By Lemma 10, for each n P N, there is a non-negative
integer Mn and a measurable set An Ď E so that µpE´Anq ă ε2´pn`2q and
|fpxq ´ fkpxq| ă 2´n whenever x P An and k ěMn. Set A “

Ş8
n“0An.

Subclaim 1.a: µpE ´Aq ă ε{2.

Proof:

µpE ´Aq “ µp
8
ď

n“0

E ´Anq ă ε
8
ÿ

n“0

2´pn`2q “ ε{2.

Subclaim 1.b: tfnu
8
n“0 converges uniformly to f on E ´A.

Proof: Let ε1 ą 0. Choose n P N so that 2´n ă ε1. Let x P A, and let
k ě n. Since x P An, |fpxq ´ fkpxq| ă 2´n ă ε1.

Claim 2: There is a closed set F Ď E so that tfnu
8
n“0 converges uni-

formly on F and µpE ´ F q ă ε.

Proof: By Theorem 6, there is a closed F Ď A so that µpA´ F q ă ε{2.
So µpE ´ F q “ µpE ´Aq Y µpA´ F q ă ε.

3.4.2 The second principle: Lusin’s theorem

We can now make the second principle precise as well, to show that mea-
surable functions are “nearly” continuous functions. To establish this, we
start with a simpler version.

Lemma 11. Let f be a simple function defined on E. Then for each ε ą 0,
there is a continuous function g : RÑ R and a closed set F Ď E for which

f “ g on F and mpE ´ F q ă ε

Proof. Let a1, a2, . . . , an be the distinct values taken by f , and let them
be taken on the sets E1, E2, . . . , En, respectively. The collection tEku

n
k“1 is
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disjoint since the ak ’s are distinct. According to Theorem 4, we may choose
closed sets F1, F2, . . . , Fn such that for each index k, 1 ď k ď n

Fk Ď Ek and m pEk ´ Fkq ă ε{n

Then we consider the set F “
Ťn
k“1 Fk, which must be closed (as the finite

union of closed sets). Since tEku
n
k“1 is disjoint,

µpE ´ F q “ µ

˜

n
ď

k“1

rEk ´ Fks

¸

“

n
ÿ

k“1

m pEk ´ Fkq ă ε

Define g to be a function on F which takes the value ak on Fk for
1 ď k ď n. Since the collection tFku

n
k“1 is disjoint, g is properly defined.

Moreover, g is continuous on F since for a point x P Fi, there is an open
interval containing x which is disjoint from the closed set

Ť

k‰i Fk and hence
on the intersection of this interval with F the function g is constant. But
g can be extended2 from a continuous function on the closed set F to a
continuous function on all of R. The continuous function g on R has the
required approximation properties.

Using this and Egoroff’s theorem, we can prove the full version of Lusin’s
Theorem.

Theorem 32 (Lusin’s Theorem). Suppose f : E Ñ R is measurable. Then,
for every ε ą 0 there is a closed set F and a continuous function g : RÑ R
so that F Ď E, µpE ´ F q ă ε, and gptq “ fptq for all t P F .

Proof. We consider only provide details for the case that mpEq ă 8. Ac-
cording to the Simple Approximation Theorem, there is a sequence tfnu of
simple functions defined on E that converges to f pointwise on E. Let n be
a natural number. By the preceding proposition, with f replaced by fn and
ε replaced by ε{2n`1, we may choose a continuous function gn on R and a
closed set Fn Ď E for which

fn “ gn on Fn and µ pE ´ Fnq ă
ε

2n`1
.

According to Egoroff’s Theorem, there is a closed set F0 contained in E
such that tfnu converges to f uniformly on F0 and µ pE ´ F0q ă ε{2. Define
F “

Ş8
n“0 Fn. Thus, we have that

2This is known as the Tietze Extension Theorem. A proof can be found in your favorite
topology book (for instance, see [Mun14] Chapter 4 Section 35).
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µpE ´ F q “ m

˜

rE ´ F0s Y

8
ď

n“1

rE ´ Fns

¸

ď
ε

2
`

8
ÿ

n“1

ε

2n`1
“ ε.

The set F is closed since it is the intersection of closed sets. Each fn is
continuous on F since F Ď Fn and fn “ gn on Fn. Finally, tfnu converges to
f uniformly on F since F Ď F0. However, the uniform limit of continuous
functions is continuous, so the restriction of f to F is continuous on F .
Finally, there is a continuous function g defined on all of R whose restriction
to F equals f (again by the Tietze Extension Theorem). This function g
has the required approximation properties.

Exercise 13. Prove Lusin’s theorem in the case that µpEq “ 8.
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Chapter 4

Lebesgue Integration

After almost 60 pages of lecture notes (and over 2000 lines of LATEXcode),
we can finally start discussing how to integrate functions.

We start by defining the Lebesgue integral for non-negative simple func-
tions, which will be the fundamental building block for the Lebesgue integral.

Definition 32. If s : X Ñ r0,8q is a simple function, and if E Ď X is
measurable, then the Lebesgue integral of s over E is defined to be

ż

E
s dµ “

ÿ

aPrangepsq

aµ
`

s´1ptauq X E
˘

.

We denote this by
ż

E
s dµ.
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Note that in Definition 32, we use the convention 0 ¨ 8 “ 0 (since the
measure of the set where s vanishes will often be infinite).

We can also consider integrals over all of X, which is defined as
ż

X
s dµ “

ÿ

aPranpsq

aµps´1rtausq

if s : X Ñ r0,8q is simple.

Example. There are a few examples of integrals that we can compute im-
mediately.

1. If E is a measurable set, then
ş

R χE dµ “ µpEq. Proof: let s “ χE.
Then, ranpsq “ t0, 1u. s´1rt0us “ Ec and s´1rt1us “ E. So,

ż

R
s dµ “ 0µpEcq ` 1µpEq “ µpEq.

2. If f is the Dirichlét function, then
ş

R f dµ “ 0.

3. If s is a non-negative step function on ra, bs, then
ş

ra,bs s dµ “
şb
a s dx.

Proof: HW exercise.

Let us now establish some basic properties of the Lebesgue integral (for
simple functions).

Proposition 33. Suppose s : X Ñ r0,8q is simple and that E Ď X is
measurable. Then,

ż

E
s dµ “

ż

X
sχE dµ.

Proof. Let t “ sχE . Without loss of generality, we can take E ‰ X. Then,
ranptq “ srEs Y t0u. Thus, ranptq ´ ranpsq Ď t0u.

When a ‰ 0, tpxq “ a if and only if x P E and spxq “ a; i.e. x P
s´1rtaus X E. Thus,

ż

X
t dµ “

ÿ

aPranptq

aµpt´1rtaus X Eq

“
ÿ

aPranptq´t0u

aµpt´1rtaus X Eq

“
ÿ

aPsrEs

aµps´1rtaus X Eq

“
ÿ

aPranpsq

aµps´1rtaus X Eq
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Lemma 12. Suppose s : X Ñ r0,8q is a simple function. Suppose E1, E2

are measurable sets so that E1, E2 Ď X and so that E1 X E2 “ H. Then,

ż

E1YE2

s µ “

ż

E1

s dµ`

ż

E2

s dµ.

Proof.

ż

E1YE2

s dµ “
ÿ

aPranpsq

aµps´1rtaus X pE1 Y E2qq

“
ÿ

aPranpsq

apµps´1rtaus X E1q ` µps
´1rtaus X E2qq

“

ż

E1

s dµ`

ż

E2

s dµ.

We now show that the Lebesgue integral is linear, which is one of its
most important properties.

Theorem 34. Suppose s1, s2 : X Ñ r0,8q are simple functions.

1.
ş

Xps1 ` s2q dµ “
ş

X s1 dµ`
ş

X s2 dµ.

2. If c P R, then
ş

X cs1 dµ “ c
ş

X s1 dµ. 1

Proof. Part a:

For each a P ranpsjq, let E
pjq
a “ s´1j rtaus. For each a P ranps1q and b P

ranps2q, let Ea,b “ E
p1q
a X E

p2q
b . Note that:

1. For each a P ranps1q, E
p1q
a “

Ť

bPranps2q
Ea,b.

2. For each b P ranps2q, E
p2q
b “

Ť

aPranps1q
Ea,b.

3. X “
Ť

a,bEa,b, and

4. Ea,b X Ea1,b1 “ H if pa, bq ‰ pa1, b1q.

1If one wants to be pedantic here, they should require that c ą 0. For the purposes of
simplifying the proof of the next theorem, I will leave off this assumption.
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By Lemma 12,

ż

X
ps` tq dµ “

ÿ

a,b

ż

Ea,b

ps` tq dµ.

On the other hand,

ż

Ea,b

ps1 ` s2q dµ “
ÿ

cPranps`tq

µpps1 ` s2q
´1rtcus X Ea,bq

“ pa` bqµpps1 ` s2q
´1rta` bus X Ea,bq

“ pa` bqµpEa,bq

So,

ż

E
ps1 ` s2q dµ “

ÿ

a,b

pa` bqµpEa,bq

“
ÿ

aPranps1q

¨

˝

ÿ

bPranps2q

aµpEa,bq

˛

‚`
ÿ

bPranps2q

¨

˝

ÿ

aPranps1q

bµpEa,bq

˛

‚

“
ÿ

aPranps1q

aµpEp1qa q `
ÿ

bPranps2q

bµpE
p2q
b q

“

ż

E
s1 dµ`

ż

E
s2 µ.

Part b:
By definition,

ż

E
cs dµ “

ÿ

caPranpcs1q

caµpEaq

“ c
ÿ

aPranps1q

aµpEaq

“ c

ż

E
s dµ.

We now show that the integral is monotonic, which is another of its
essential features.

Theorem 35. If s1 ď s2, then
ş

X s1 dµ ď
ş

X s2 dµ.
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Proof. Consider the function t “ s2 ´ s1. This is positive and simple func-
tion, so we have that

ż

X
s2 dµ´

ż

X
s2 dµ “

ż

X
t dµ

“
ÿ

aPranptq

aµpEaq ě 0.

Exercise 14. Rearrange the proof of Theorem 35 to not require the differ-
ence of integrals (which we have technically not defined yet).

4.1 The Lebesgue integral for non-negative func-
tions

We can now define the Lebesgue integral for non-negative functions.

Definition 33. If f : X Ď r0,8s is a measurable function, and if E is a
measurable subset of X, then the Lebesgue integral of f over E is

sup

"
ż

E
s dµ : 0 ď s ď f and s is simple

*

.

We denote this by
ż

E
f dµ.

Note that if s : X Ñ r0,8q is simple, and if E Ď X is measurable, then
by Theorem 34, Definitions 32 and 33 yield the same value.

This shows that the definition of the Lebesgue integral is consistent. We
can now state two principles for the Lebesgue integral, which are simple
consequences of the definition but are also quite useful.

Observation 4. Suppose f : X Ñ r0,8s is measurable, and suppose E Ď X
is measurable.

1. If s : X Ñ R is a simple function so that 0 ď s ď f , then
ş

E s dµ ď
ş

E f dµ.

2. Suppose α P r0,8s.
ş

E f dµ ď α if and only if
ş

E s dµ ď α for every
simple s : X Ñ R so that 0 ď s ď f .
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We now establish two propositions about the Lebesgue integral. First
we show that the Lebesgue integral of a function on a subset is the same as
the integral of the product of the function which the characteristic function

Proposition 36. Suppose f : X Ñ r0,8s is measurable and that E Ď X is
measurable. Then,

ş

E f dµ “
ş

X fχE dµ.

Proof. To do this, we first show that
ş

E f dµ ď
ş

X f ¨ χE dµ.
For this, set α “

ş

X f ¨ χE dµ and suppose s : X Ñ r0,8s is a simple
function so that s ď f .
Then,

s ¨ χE ď f ¨ χE .

The function sχE is simple so we have that
ż

X
s ¨ χE dµ ď

ż

X
f ¨ χE dµ

by Definition 33. By Proposition 33,
ş

E s dµ “
ş

X s ¨ χE dµ. So,
ż

E
s dµ ď

ż

X
fχE dµ

and thus
ż

E
f dµ ď

ż

X
fχE dµ.

We now show the opposite inequality.
ż

X
f ¨ χE dµ ď

ż

E
f dµ.

Suppose s : X Ñ r0,8q is a simple function so that s ď f ¨ χE . Since f
is non-negative, s ď f . Thus,

ż

E
s dµ ď

ż

E
f dµ.

But,
ż

E
s dµ “

ż

X
s dµ.

So,
ż

X
s dµ ď

ż

E
f dµ.
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Proposition 37. Suppose f, g : X Ñ r0,8s are measurable. If f ď g then
ş

X fµ ď
ş

X g dµ.

Proof. Suppose f ď g. If s is a simple function so that 0 ď s ď f , then
s ď g .

So,
"
ż

X
s dµ : 0 ď s ď f and s is simple

*

Ď

"
ż

X
s dµ : 0 ď s ď g and s is simple

*

Thus,
ş

E f dµ ď
ş

E g dµ.

We now establish one of the most important results about the Lebesgue
integral, the monotone convergence theorem. This is a central and very
useful result which shows that we can interchange limits and integration for
increasing sequences of functions.

Theorem 38. (Monotone Convergence Theorem): Suppose f, f0, f1, . . . :
X Ñ r0,8s are measurable and that fn ď fn`1 for all n P N. Suppose
fptq “ limnÑ8 fnptq for all t P X. Then,

ż

X
f dµ “ lim

nÑ8

ż

X
fn dµ.

Proof. We have that fn ď f for all n P N since fn ď fn`1. Let α “

limnÑ8

ş

X fn dµ. Then, α ď
ş

X f dµ.

Claim 1:
ş

X s dµ ď α whenever s : X Ñ R is a simple function so that
0 ď s ă f .

Proof Claim 1: Suppose s : X Ñ R is a simple function so that 0 ď s ă f .
For each n P N, let

Xn “ tx P X : spxq ď fnpxqu.

So, X “
Ť

nXn (s ă f). Also, Xn Ď Xn`1. On the other hand,

ż

Xn

s dµ ď

ż

Xn

fn dµ ď

ż

X
fn dµ ď α.
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and

lim
nÑ8

ż

Xn

s dµ “ lim
nÑ8

ÿ

aPranpsq

aµps´1rtaus XXnq

“
ÿ

aPranpsq

aµps´1rtaus XXq “

ż

X
s dµ.

SO,
ş

X s dµ ď α.

Claim 2:
ş

X s dµ ď α whenever s : X Ñ R is a simple function so that
0 ď s ď f .

Proof Claim 2: Suppose s : X Ñ R is a simple function so that 0 ď s ď f .
Let sn “ p1´2´nqs for each n P N. Thus, 0 ď sn ă f . Hence,

ş

X sn dµ ď α.
Therefore, p1´ 2´nq

ş

X sn dµ ď α for each n P N. Thus,
ş

X s dµ ď α.

Thus,
ş

X f dµ ď α.

Using the monotone convergence theorem, we can now show that the
Lebesgue integral is linear (we had previously only shown this for simple
functions).

Theorem 39. Suppose f, g : X Ñ r0,8s are measurable.

1.
ş

Xpf ` gq dµ “
ş

X f dµ`
ş

X g dµ.

2. If c ě 0, then
ş

X cf dµ “ c
ş

X f dµ.

Proof. By the proof of Theorem 30, there exist non-decreasing sequences
of non-negative simple functions tsnu

8
n“0 and ttnu

8
n“0 so that sn Ñ f and

tn Ñ g. Apply MCT.

This has the following corollary, which is essentially a restatement of the
Monotone convergence theorem.

Corollary 12. Suppose f0, f1, . . . : X Ñ r0,8s are measurable and that
fpxq “

ř8
n“0 fnpxq for all x P X. Then,

ż

X
f dµ “

8
ÿ

n“0

ż

X
fn dµ.

Proof. Set gk “
řk
n“0 fn. Therefore, 0 ď gk ď gk`1 and gk Ñ f . Apply

MCT.
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In general, pointwise limits of functions need not preserve the Lebesgue
integral. However, there is an inequality which always holds, which is known
as Fatou’s lemma.

Lemma 13 (Fatou’s lemma). Suppose f0, f1, . . . : X Ñ r0,8s are measur-
able and that fpxq “ lim infn fnpxq for all x P X. Then,

ż

X
f dµ ď lim inf

n

ż

X
fn dµ

Proof. Set gk “ infněk fn. Thus, gk ď f , f “ limk gk, and gk ď gk`1 and
gk ď f . Thus,

ż

X
f dµ “ lim

k

ż

X
gk dµ

“ lim inf
k

ż

X
gk dµ

ď lim inf
k

ż

X
fk dµ.

To see that Fatou’s inequality need not be an equality, consider the
following example.

Example 1. Consider the sequence of functions

fn “
1

n
χr0,ns.

We have that fn Ñ f ” 0 uniformly. However, for all n
ż

R
fn dµ “

1

n
¨ pn´ 0q “ 1,

whereas
ż

R
f dµ “ 0.

Before moving on to the Lebesgue integral of functions which can be both
positive or negative, let us note one very important inequality in probability,
known as Chebychev’s inequality.

Theorem 40. Suppose f : X Ñ r0,8s is measurable. Then, for all λ ą 0,

µptx P X : fpxq ě λuq ď
1

λ

ż

X
f dµ
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Proof. We can assume that
ş

X f dµ ă 8, or else the theorem is trivial.
Set Eλ “ tx P X : fpxq ě λu.

Set h “ λχEλ . Thus, 0 ď h ď f . Therefore,
ş

X h dµ ď
ş

X f dµ. But,
ş

X h dµ “ λµpEλq.

4.2 The Lebesgue integral of real-valued functions

To define the Lebesgue integral of a real-valued function, we restrict our-
selves to functions whose absolute value is integrable. This might seem
strange initially, but this idea should be somewhat familiar because it is
exactly the distinction between convergent series and absolute convergent
series.

Definition 34 (Integrable functions). Suppose f : X Ñ r´8,8s is mea-
surable. Suppose E is a measurable subset of X.

1. f is integrable over E if
ş

E |f | dµ ă 8.

2. f is integrable if it is integrable over X.

For these functions, we can just define the Lebesgue integral of the dif-
ference between the integrals of the positive and negative parts.

Definition 35 (Lebesgue integral). Suppose f : X Ñ r´8,8s is integrable
and E Ď X is measurable. The Lebesgue integral of f over E is defined to
be

ż

E
f`dµ´

ż

E
f´ dµ.

This is denoted by
ş

E f dµ.

Before moving on, we make two brief remarks.

Observation 5. 1. If
ş

X |f | dµ ă 8, and if E Ď X is measurable, then
ş

E f
` dµ and

ş

E f
´ dµ are finite.

2. If f is non-negative and integrable, then Definitions 35 and 33 yield
same value for

ş

E f dµ.

Proposition 41. Suppose f : X Ñ r´8,8s is integrable and E Ď X is
measurable. Then,

ż

E
f dµ “

ż

X
f ¨ χE dµ.
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Instead of giving a full proof, note that we already know this if f ě 0.
Otherwise, we set g “ f ¨ χE . Then we have that g` “ f` ¨ χE and
g´ “ f´ ¨ χE .

We can now show that the integral is monotonic and linear.

Theorem 42. Suppose f, g : X Ñ r´8,8s are integrable and f ď g. Then,
ş

X f dµ ď
ş

X g dµ.

To see this, note that we have already established this if f ě 0. Other-
wise, note that f` ď g` and g´ ď f´.

Theorem 43. Suppose f, g : X Ñ r´8,8s are integrable and that α, β P R.
Then, αf ` βg is integrable and

ş

Xpαf ` βgq dµ “ α
ş

X f dµ` β
ş

X g dµ.

Proof. We start by noting that |αf ` βg| ď |α||f | ` |β||g|. Thus, αf ` βg is
integrable.

Claim 1:
ş

Xpf ` gq dµ “
ş

X f dµ`
ş

X g dµ.

Proof Claim 1: Set h “ f ` g. Then,

h` ´ h´ “ f` ´ f´ ` g` ´ g´

So,
h` ` f´ ` g´ “ f` ` g` ` h´.

Thus,

ż

X
h` dµ`

ż

X
f` dµ`

ż

X
g´ dµ “

ż

X
f` dµ`

ż

X
g` dµ`

ż

X
h´ dµ.

Now rearrange terms.

Claim 2:
ş

X αf dµ “ α
ş

X f dµ.

We will skip the proof of this claim.

Corollary 13. Suppose f : X Ñ r´8,8s is integrable. Then,

ˇ

ˇ

ˇ

ˇ

ż

X
f dµ

ˇ

ˇ

ˇ

ˇ

ď

ż

X
|f | dµ.
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Proof sketch: f,´f ď |f |. Apply monotonicity and linearity. This result
is known in the book as the Integral Comparison test, where it is stated as
follows.

Corollary 14. Suppose f : X Ñ r´8,8s is measurable and

|f | ă g

for some integrable function g. Then, f is integrable and
ˇ

ˇ

ˇ

ˇ

ż

X
f dµ

ˇ

ˇ

ˇ

ˇ

ď

ż

X
|f | dµ.

In any case, we can use this to show the following proposition

Proposition 44. Suppose f : X Ñ r´8,8s is measurable and either inte-
grable or non-negative. If E Ď X has measure 0, then

ş

E f dµ “ 0.

4.2.1 The dominated convergence theorem

We now prove one the most fundamental theorems in measure theory: the
dominated convergence theorem.

Theorem 45. Suppose f0, f1, . . . : X Ñ R are measurable and that fpxq “
limnÑ8 fnpxq for all x P X. Suppose there is an integrable g : X Ñ r´8,8s
so that |fnpxq| ď gpxq for all x P X. Then, f is integrable,

lim
nÑ8

ż

X
|fn ´ f | dµ “ 0, (4.1)

and

lim
nÑ8

ż

X
fn dµ “

ż

X
f dµ (4.2)

Proof. Since |fpxq| “ limnÑ8 |fnpxq| ď gpxq. Thus, f is integrable.
To establish Equation 4.1, we note that |fn ´ f | ď 2g and that

2g “ lim inf
n

p2g ´ |fn ´ f |q.

By Fatou’s Lemma,
ż

X
2g dµ ď lim inf

n

ż

X
p2g ´ |fn ´ f |q dµ

“

ż

X
2g dµ´ lim sup

n

ż

X
|fn ´ f | dµ
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So,

lim sup
n

ż

X
|fn ´ f | dµ ď 0.

Thus, limn

ş

X |fn ´ f | dµ “ 0.
Equation 4.2 now follows from Equation 4.1.

As a preliminary application, we can now give a disproportionately so-
phisticated proof that the harmonic series diverges.

Exercise 15. Using Example 1, show that the series

8
ÿ

n“1

1

n

diverges. Hint: Consider the function gpxq “ supn fpxq.

This argument was posted by Tao as an answer on MathOverflow, but
I actually find it helpful to remember the dominated convergence theorem
and Fatou’s inequality.

Theorem 46. Let f : E Ñ r´8,8s be integrable. Suppose tEnu
8
n“0 is a

pairwise disjoint sequence of measurable subsets of E and set E “
Ť

nEn.
Then,

ż

E
f dµ “

8
ÿ

n“0

ż

En

f dµ.

Proof. Set

Fn “

n
ď

j“0

Ej

fn “ f ¨ χFn

Thus, limnÑ8 fn “ f . |fn| ď |f |. So, by DCT

lim
nÑ8

ż

E
fn dµ “

ż

E
f dµ

But,
ż

E
fn dµ “

n
ÿ

k“0

ż

Ek

f dµ.
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This implies the following corollary.

Corollary 15. (Continuity of integration): Suppose f : X Ñ r´8,8s is
integrable.

1. If E0 Ď E1 . . . Ď X are measurable, and if E “
Ť

nEn, then

ż

E
f dµ “ lim

nÑ8

ż

En

f dµ.

2. If X Ě E0 Ě E1 Ě . . ., and if E “
Ş

nEn, then

ż

E
f dµ “ lim

nÑ8

ż

En

f dµ.

4.2.2 Uniform integrability and the Vitali convergence the-
orem

We conclude our initial discussion of Lebesgue integration by finding a cri-
terion which allows us to interchange limits and integrals. Let us start by
making an observation which was actually an earlier homework exercise and
says that we can break up sets of finite measure into the disjoint union of
sets with small measure.

Lemma 14. Let E be a set of finite measure and δ ą 0. Then E is the
disjoint union of a finite collection of sets, each of which has measure less
than δ.

Proof. By the continuity of measure,

lim
nÑ8

µpE „ r´n, nsq “ µpHq “ 0

Choose a natural number n0 for which µ pE „ r´n0, n0sq ă δ. By choosing
a fine enough partition of r´n0, n0s, express E X r´n0, n0s as the disjoint
union of a finite collection of sets, each of which has measure less than δ.

Proposition 47. Let f be a measurable function on E. If f is integrable
over E, then for each ε ą 0, there is a δ ą 0 for which if A Ď E is measurable
and µpAq ă δ, then

ż

A
|f | ă ε

. Conversely, in the case µpEq ă 8, if for each ε ą 0, there is aδ ą 0 for
which this inequality holds, then f is integrable over E.
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Proof. The theorem follows by establishing it separately for the positive
and negative parts of f so WLOG we take f ě 0 on E. First, we assume
f is integrable over E and let ε ą 0. By the definition of the integral of a
nonnegative integrable function, there is a measurable bounded function fε
of finite support which satisfies

0 ď fε ď f on E and 0 ď

ż

E
f ´

ż

E
fε ă ε{2

Since f ´ fε ě 0 on E, if A Ď E is measurable, then, by the linearity and
additivity over domains of the integral,

ż

A
f ´

ż

A
fε “

ż

A
rf ´ fεs ď

ż

E
rf ´ fεs “

ż

E
f ´

ż

E
fε ă ε{2.

But fε is bounded so we can find M ą 0 for which 0 ď fε ă M on E0.
Therefore, if A Ď E is measurable, then

ż

A
f ă

ż

A
fε ` ε{2 ďM ¨ µpAq ` ε{2 .

We then take δ “ ε{2M . Then we have that if µpAq ă δ, then

ż

A
|f | ă ε.

Conversely, suppose mpEq ă 8 and for each ε ą 0, there is a δ ą 0 for
which µpAq ă δ implies

ş

A |f | ă ε.
Let δ0 ą 0 be such that

ş

A |f | ă 1 whenever µpAq ď δ0. Since µpEq ă 8,
the previous lemma shows that we can consider E as the disjoint union of a
finite collection of measurable subsets tEku

N
k“1, each of which has measure

less than δ0. Therefore
N
ÿ

k“1

ż

Ek

f ă N

By the additivity over domains of integration it follows that if h is a non-
negative measurable function of finite support and 0 ď h ď f on E, then
ş

E h ă N. Therefore f is integrable.

With these results in mind, we give the following definition of integra-
bility for a sequence of functions.
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Definition 36. Suppose f0, f1, . . . are measurable functions on X. tfnu
8
n“0

is uniformly integrable if for every ε ą 0 there is a δ ą 0 so that

ż

A
|fn| dµ ă ε

whenever n P N and A is a subset of X whose measure is smaller than δ.

Theorem 48 (Vitali convergence theorem). Suppose µpXq ă 8 and tfnu
8
n“0

is a uniformly integrable sequence of measurable functions on X that con-
verges pointwise almost everywhere to f . Then, f is integrable and

lim
nÑ8

ż

X
fn dµ “

ż

X
f dµ.

We will not cover the proof in class. However, the proof is contained in
the book (page 94).

Intuitively, we can think of uniform integrability as being analogous to
equicontinuity for a sequence of functions, in that each function in the se-
quence satisfies a certain estimate uniformly in n. From this perspective,
the Vitali convergence theorem is roughly analogous to the Arzela-Ascoli
theorem (although for the latter theorem we must pass to a subsequence to
find functions which converges uniformly).

4.3 Convergence in measure

This subsection is taken from Section 5.2 of Royden-Fitzpatrick with mini-
mal modifications.

There is one more mode of convergence that we need to know for the
qualifying exam, which is convergence in measure. This notion is particu-
larly useful in probability theory, because it implies that the measure (i.e.,
probability) where one function differs greatly from another becomes ex-
tremely small.

Definition 37. Let tfnu be a sequence of measurable functions and f a
measurable function (all defined on E), so that f and all of the fn are finite
a.e. The sequence tfnu is said to converge in measure on E to f provided
for each η ą 0,

lim
nÑ8

µ tx P E | |fnpxq ´ fpxq| ą ηu “ 0
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It is a good exercise to show that a sequence of (finite a.e.) measurable
functions which converge uniformly also converge in measure. However, we
can also say something stronger and relate pointwise convergence almost
everywhere to convergence in measure.

Proposition 49. Assume E has finite measure. Let tfnu be a sequence
of measurable functions on E that converges pointwise a.e. on E to f and
suppose that f is finite a.e. Then tfnu Ñ f in measure on E.

Proof. The function f is measurable since it is the pointwise limit almost
everywhere of a sequence of measurable functions. To prove convergence in
measure we let ε ą 0 and seek an index N such that

µ tx P E|fnpxq ´ fpxq| ą ηu ă ε for all n ě N,

where η is a positive number.
Using Egoroff’s Theorem (Theorem 31), we can find a measurable subset

F of E with µpE „ F q ă ε where tfnu converges to f uniformly. As such,
we can find N large enough so that

|fn ´ f | ă η on F for all n ě N .

Thus, for n ě N, tx P E | | fnpxq ´ fpxq |ą ηu Ď E „ F , which implies
that the measure is less than ε.

This result fails if E has infinite measure (Exercise: find a counter-
example). Furthermore, there are sequences which converge in measure
which do not converge pointwise, so the converse is false. However, given
a sequence of functions which converge in measure, there is a subsequence
which converges pointwise almost everywhere.

Theorem 50. If tfnu Ñ f in measure on E, then there is a subsequence
tfnku that converges pointwise a.e. on E to f .

Proof. By the definition of convergence in measure, there is a strictly in-
creasing sequence of natural numbers tnku for which

µ tx P E | | fjpxq ´ fpxq |ą 1{ku ă
1

2k
for all j ě nk.

For each index k, define

Ek “ tx P E | | fnk ´ fpxq |ą 1{ku
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Since µ pEkq ă
1
2k

, we have that
ř8
k“1m pEkq ă 8. The Borel-Cantelli

Lemma then implies that for almost all x P E, there is an index Kpxq such
that x R Ek if k ě Kpxq, that is,

|fnkpxq ´ fpxq| ď 1{k for all k ě Kpxq.

Therefore
lim
kÑ8

fnkpxq “ fpxq.

In this proof, the index Kpxq is allowed to depend on x, as it might not
be possible to choose such an index uniformly in x.

The following proposition shows that many of the theorems in this course
can be weakened to require convergence in measure rather than pointwise
everywhere convergence.

Proposition 51. Fatou’s Lemma, the Monotone Convergence Theorem,
the Lebesgue Dominated Convergence Theorem, and the Vitali Convergence
Theorem remain valid if ”pointwise convergence a.e.” is replaced by ”con-
vergence in measure.”

The proof is left as an exercise.

4.4 The Riemann and the Lebesgue integral

At this point, we have defined the Lebesgue integral and discussed some of
its fundamental properties. However, it is natural to ask how this integral
relates to the Riemann integral, which is the focus of this section. To do so,
we start by proving some small lemmas.

Lemma 15. Suppose f : ra, bs Ñ R is Riemann integrable. Then, there is
a non-decreasing sequence of step functions ts1,nu

8
n“0 and a non-increasing

sequence of step functions ts2,nu
8
n“0 so that for all n P N s1,n ď f ď s2,n

and
ż b

a
ps2,n ´ s1,nq ă 2´n.

The proof of this is left as a homework exercise.
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We now prove a “sandwich” lemma for these integrals.

Lemma 16. Suppose tφnu
8
n“0 is a non-decreasing sequence of integrable

function on X, and suppose tψnu
8
n“0 is a non-increasing sequence of inte-

grable functions on X. Suppose φn ď f ď ψn for all n P N and that

lim
nÑ8

ż

X
pψn ´ φnq dµ “ 0.

Then:

1. φn Ñ f a.e. and ψn Ñ f a.e.

2. f is integrable

3.

lim
nÑ8

ż

X
φn dµ “ lim

nÑ8

ż

X
ψn dµ “

ż

X
f dµ.

Proof. (a): Let φ “ limnÑ8 φn and ψ “ limnÑ8 ψn. Thus, 0 ď ψ ´ φ ď
ψn ´ φn. Thus,

ş

Xpψ ´ φq dµ “ 0. Therefore, ψ “ φ a.e. Thus, φ “ f “ ψ
a.e. Thus, f is measurable.

(b): We have 0 ď f ´ φ0 ď ψ0 ´ φ0. Thus, f ´ φ0 is integrable. Thus, f
is integrable.

(c): This follows from monotonicity.
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With these two results in hand, we can now show that the Riemann in-
tegral is equal to the Lebesgue integral, whenever the former is well-defined.

Theorem 52. Suppose f : ra, bs Ñ R is Riemann integrable. Then, f is
Lebesgue integrable and the two integrals are equal. i.e.

ż b

a
f “

ż

ra,bs
f dµ.

Proof. By Lemma 15, there is a non-increasing sequence of step functions
ts2,nu

8
n“0 so that for all n P N s1,n ď f ď s2,n and

şb
apsn,2 ´ sn,1q ă 2´n. It

follows from Lemma 16 that f is integrable. Since

ż

ra,bs
sn,j dµ “

ż b

a
sn,j , and since

ż b

a
sn,1 ď

ż b

a
f ď

ż b

a
sn,2,

it follows that
ż b

a
f “ lim

nÑ8

ż b

a
s1,n “

ż

ra,bs
f dµ.

As such, all that remains is to determine necessary and sufficient condi-
tions of a function to be Riemann integrable. For this, we have the following
result.

Theorem 53. Suppose f : ra, bs Ñ R is bounded. Then, f is Riemann
integrable if and only if f is continuous a.e..

Proof. pñq: Suppose f is Riemann integrable. By Lemma 15, there is a
non-increasing sequence of step functions ts2,nu

8
n“0 so that for all n P N

s1,n ď f ď s2,n and
şb
apsn,2 ´ sn,1q ă 2´n.

Let

Ej “ tx : Dn P N sj,n is discontinuous at xu j “ 1, 2

Ej`2 “ tx : lim
nÑ8

sj,npxq ‰ fpxqu j “ 1, 2

E “ E1 Y E2 Y E3 Y E4

Thus E1 Y E2 is countable. So µpEq “ 0.

Claim: If x0 P ra, bs ´ E, then f is continuous at x0.
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Proof Claim: Suppose x0 P ra, bs ´ E. Let ε ą 0. Choose N0 so that
s2,N0pxq´s1,N0pxq ă ε. There exist δ ą 0 so that s1,N0 and s2,N0 are constant
on px0 ´ δ, x0 ` δq. Therefore, if |x´ x0| ă δ, then

|fpxq ´ fpx0q| ď |s2,N0pxq ´ s1,N0px0q| ă ε.

pðq: Suppose f is continuous a.e.. For each n, let Pn denote the uniform

partition of ra, bs of width pb´ aq{2´n. Let a
pnq
j denote the j-th point in Pn

where j “ 0, . . . , 2n. Set I
pnq
j “ pa

pnq
j , a

pnq
j`1s.

Let

m
pnq
j “ inftfpx1q : x1 P I

pnq
j u

M
pnq
j “ suptfpx1q : x1 P I

pnq
j u

When x P I
pnq
j , set

φnpxq “ m
pn0q

j

ψnpxq “ M
pnq
j .

We then define the set

E “ tx P ra, bs : f is discontinuous at xu
ď

!

a
pnq
j : n P N and 0 ď j ď 2n

)

.

Thus, µpEq “ 0.

Claim 1: If x0 P ra, bs ´ E, then limnÑ8 φnpx0q “ limnÑ8 ψnpx0q “
fpx0q.

Proof Claim 1: Suppose x0 P ra, bs´E. Let ε ą 0. Choose δ ą 0 so that

|x´ x0| ă δ ñ |fpxq ´ fpx0q| ă ε.

Choose n0 P N so that pb ´ aq2´n0 ă δ. Let n ě n0. There is a unique

j so that x P I
pnq
j . Therefore, M

pnq
j ´ m

pnq
j ď pb ´ aq2´n ď 2ε. So,

|s2,npxq ´ fpxq|, |s1,npxq ´ fpxq| ď 2ε.

Claim 2: limnÑ8

ş

ra,bspψn ´ φnq dµ “ 0.
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Proof Claim 2: Since f is bounded, there is a positive number M so that
0 ď ψn ´ φn ăM for all n P N. Thus, by DCT

lim
nÑ8

ż

ra,bs
pψn ´ φnq dµ “ 0.

Claim 3: f is Riemann integrable.

Proof Claim 3:

ż

ra,bs
ψn dµ “

ż b

a
ψn

ě

ż b

a
f

ě

ż b

a

f

ě

ż b

a
φn “

ż

ra,bs
φn dµ

Therefore,
ż b

a
f “

ż b

a

f.

Although it is genuinely a stronger condition for a function to be Rie-
mann integrable versus Lebesgue integrable, it turns out that the building
blocks for each of these integrals are not so different. In fact, we have the
following proposition (proof taken from Mathstackexchange [wh])

Proposition 54. Step functions are dense inside the space of simple func-
tions.

Proof. It suffices to show that the characteristic of a measurable set of finite
measure can be approximated by step functions. Take a measurable set A
with µpAq ă `8; by regularity, we can find an open set U Ą A such that
µpUzAq ă ε.

U can be written as a countable union of disjoint intervals:

U “
8
ď

n“0

In
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so, we can find N such that

µ

˜

ď

nąN

In

¸

ă ε .

Hence, we define

hpxq “
N
ÿ

n“0

χInpxq

and we have
ż

|hpxq ´ χApxq} ď 2ε .

So, the step functions are dense among the simple functions.
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Chapter 5

Differentiation and
Integration

The fundamental theorems of calculus provide a foundational relationship
between the Riemann integral and the derivative. We now want to establish
versions of these theorems for the Lebesgue integral.

5.1 Monotone functions

A function is monotone if it is either increasing or decreasing. Such func-
tions play an essential role in the Lebesgue versions of the fundamental
theorems of calculus for two reasons.

1. A theorem of Lebesgue asserts that a monotone function on an open
interval is differentiable almost everywhere.

2. A theorem of Jordan shows that a very general family of functions
(i.e., those of bounded variation) may be expressed as the difference of
monotone functions and therefore they also are differentiable almost
everywhere on the interior of their domain.

Theorem 55. Every function that is monotone on an open interval is con-
tinuous except at a countable set of points.

Proof. Suppose I is an open interval, and suppose f is a monotone function
on I. Without loss of generality, f is non-decreasing. Set

E “

"

a P I : lim
xÑa´

fpxq ‰ lim
xÑa`

fpxq

*

.

81



For each a P E, let

`a “ lim
xÑa´

fpxq

ra “ lim
xÑa`

fpxq

Since f is non-decreasing, `a ă ra for all a P E.

Claim 1: if a, b P E, and if a ‰ b, then p`a, raq X p`b, rbq “ H.
Proof Claim 1:

Suppose a, b P E and a ‰ b. WLOG a ă b. Since f is non-decreasing,
for all x0, x1 P I,

x0 ă a and x1 ą b ñ fpx0q ď fpx1q.

Thus, ra ď `b.

Claim 2: E is countable.

For each a P E, choose a rational number qa P pra, `aq. By Claim 1,
a ÞÑ qa is one-to-one. Thus, E is countable.

We want to show that monotone functions are differentiable almost ev-
erywhere. For this, we will need to define some concepts related to deriva-
tives.

Definition 38. Suppose f : ra, bs Ñ R is integrable. When h ą 0 and
x P ra, bs, let

Diffhpfqpxq “
fpx` hq ´ fpxq

h
.

We call Diffhpfq a divided difference function.

Definition 39. Suppose f : AÑ R and x0 belongs to the interior of A.

1. Dpfqpx0q :“ limhÑ0` sup0ă|t|ďh Difftpfqpx0q. We call Dpfq the upper
derivative of f .

2. Dpfqpx0q :“ limhÑ0` inf0ă|t|ďh Difftpfqpx0q. We call Dpfq the lower
derivative of f .
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If Dpfqpx0q “ Dpfqpx0q, then f is differentiable at x0 and we set f 1px0q “
Dpfqpx0q.

We can immediately see that Dpfqpx0q ď Dpfqpx0q.

Lemma 17. Suppose f : ra, bs Ñ R is non-decreasing. Then:

1. For all α ą 0,

µptx P pa, bq : Dpfqpxq ě αuq ă
1

α
pfpbq ´ fpaqq.

2. µptx P pa, bq : Dpfqpxq “ 8uq “ 0.

Proof. (1): Suppose α ą 0. Set

Eα “ tx P pa, bq : Dpfqpxq ě αu.

Set
F “ trc, ds : rc, ds Ď pa, bq and fpdq ´ fpcq ě αpd´ cqu.

Claim 1: F is a Vitali covering (recall Definition 14) of Eα.

Proof Claim 1: Let x0 P Eα, and let ε ą 0. Dpfqpx0q ě α. So, there is a
δ ą 0 so that for all h P p0, δq, there is a t so that |t| ď h and

fpx0 ` tq ´ fpx0q

t
ě α. (5.1)

Choose h ą 0 so that h ă δ, ε{2. and rx0 ´ h, x0 ` hs Ď pa, bq. Choose t so
that |t| ď h and (5.1). Set

c “ mintx0, x0 ` tu

d “ maxtx0, x0 ` tu

Since f non-decreasing, fpdq ´ dpcq ě αpd´ cq. Thus, rc, ds P F , x0 P rc, ds,
and d´ c ă ε.

Claim 2: µ˚pEαq ď
1
αpfpbq ´ fpaqq.
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Proof Claim 2: Let ε ą 0. By the Vitali Covering Lemma, there exist
rc0, d0s, . . . , rcj , djs P F so that prc0, d0s, . . . , rcn, dnsq is pairwise disjoint and
so that

µ˚pEα ´
n
ď

j“0

rcj , djsq ă ε.

Therefore,

µ˚pEαq ď ε`
n
ÿ

j“0

pdj ´ cjq

ď ε` α´1
n
ÿ

j“0

pfpdjq ´ fpcjqq

ď ε` α´1pfpbq ´ fpaqq since f non-decreasing

Therefore, µ˚pEαq ď α´1pfpbq ´ fpaqq.

(2): The second claim follows directly from the first one.

We can not show that monotone functions are differentiable almost ev-
erywhere.

Theorem 56. Suppose I is an open interval and f : I Ñ R is monotone.
Then, f is differentiable a.e..

Proof. Suppose I “ pa, bq where ´8 ă a ă b ă 8 and set

E “ tx P pa, bq : Dpfqpxq ą Dpfqpxqu.

For all α, β P Q with α ą β, let

Eα,β “ tx P pa, bq : Dpfqpxq ą α ą β ą Dpfqpxqu.

Therefore, E “
Ť

α,β Eα,β.

Claim 1: µ˚pEα,βq “ 0.

Proof Claim 1: Let α, β P Q with β ą α and take ε ą 0.
Let O be an open set so that µpOq ď µ˚pEα,βq ` ε. We then se F be
the collection of closed, bounded intervals rc, ds contained in O for which
fpdq ´ fpcq ă βpd´ cq.

F “ trc, ds : rc, ds Ď O and fpdq ´ fpcq ă βpd´ cqu.
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As in the proof of the previous lemma (Lemma 17), F is a Vitali covering
of Eα,β (since x P Eα,β implies that Dpfqpxq ă β).

By the Vitali Covering Lemma, there exist rc0, d0s, . . . , rcn, dns P F so
that prc0, d0s, . . . , rcn, dnsq is pairwise disjoint and

µ˚pEα,β ´
n
ď

j“0

rcj , djsq ă ε.

Using Lemma 17, we also have that

µ˚pEα,β X rcj , djsq ď α´1pfpdjq ´ fpcjqq.

Combining both of these, we find that

µ˚pEα,βq ă ε` α´1
n
ÿ

j“0

pfpdjq ´ fpcjqq

ă ε` α´1β
n
ÿ

j“0

pdj ´ cjq

ď ε` α´1βµpOq
ď ε` α´1βpµ˚pEα,βq ` εq.

Since ε was arbitrary, this shows that

µ˚pEα,βq ď α´1βµ˚pEα,βq.

However, since α´1β ă 1 and µ˚pEα,βq ă 8,

µ˚pEα,βq “ 0.

Our goal now is is prove the fundamental theorem of calculus for mono-
tonic functions. However, before we do so we need to provide two more
definitions and prove a small proposition.

Definition 40. Suppose f : ra, bs Ñ R is integrable.

1. When h ą 0 and x P ra, bs, let

Diffhpfqpxq “
fpx` hq ´ fpxq

h
.

We call Diffhpfq a divided difference function.
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2. When h ą 0 and x P ra, bs, let

Avhpfqpxq “
1

h

ż

rx,x`hs
f dµ

We call Avhpfq an average value function.

: In (a) and (b) we take fpb` hq to be fpbq.

Proposition 57. Suppose f : ra, bs Ñ R is integrable. Then,

ż v

u
Diffhpfq dµ “ Avhpvq ´Avhpfq.

whenever a ď u ă v ď b and h ą 0.

Proof.
ż v

u
Diffhpfq dµ “

1

h

„
ż v

u
fpx` hq dµpxq ´

ż v

u
f dµ



.

To see this, note that

ż v

u
fpx` hq dµpxq “

ż v`h

u`h
f dµ.

Then note that

ż v`h

u`h
f dµ´

ż v

u
f dµ “

ż v`h

v
f dµ´

ż u`h

u
f dµ.

To see this, note that there are two separate cases, where u ` h ă v and
where v ď u` h. Combining these factos together, we find that

ż

Diffhpfq dµ “ Avhpfqpvq ´Avhpfqpuq.

Finally, over 80 pages (and over 3000 lines of LATEX) in, we can (almost)
prove the fundamental theorem of calculus (for monotonic functions).

Proposition 58. Suppose f : ra, bs Ñ R is non-decreasing. Then, f 1 is
integrable and

ż b

a
f 1 dµ ď fpbq ´ fpaq.
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Proof. From our previous work, we immediately see the following.

1. f is measurable (applying Theorem 55 since f is monotonic).

2. f is differentiable a.e. (applying Theorem 56).

3. f 1 ě 0. Since f is non-decreasing.

şb
a f

1 dµ ď lim infnrAv2´npfqpbq ´Av2´npfqpaqs.

Proof Claim 1: We first note that

f 1 “ lim
nÑ8

Diff2´npfq.

By Fatou’s Lemma and Proposition 57,

ż b

a
f 1 dµ ď lim inf

n

ż b

a
Diff2´npfq dµ

“ lim inf
n

rAv2´npfqpbq ´Av2´npfqpaqs

Claim 2: Av2´npfqpbq ´Av2´npfqpaq ď fpbq ´ fpaq.

By definition

Av2´npfqpbq “ 2n
ż b`2´n

b
f dµ “ 2nfpbqpb` 2´n ´ bq “ fpbq.

And, since f is non-decreasing,

Av2´npfqpaq “ 2n
ż a`2´n

a
f dµ ě 2nfpaq2´n “ fpaq.

Note that the inequality in this proposition can be strict. For instance,
if φ is the Cantor-Lebesgue function, then

ż 1

0
φ1 dµ “ 0 ă φp1q ´ φp0q.
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5.2 Functions of bounded variation

In order to take what we have done for monotonic functions and apply it
more generally, we first need to discuss the notion of variation for a function.

Definition 41. Suppose f : ra, bs Ñ R.

1. If P “ px0, . . . , xnq is a partition of ra, bs, then we define

V pf, P q “
ÿ

jăn

|fpxj`1q ´ fpxjq|.

V pf, P q is called the variation of f with respect to P .

2. The total variation of f is

TV pfq :“ sup
P
V pf, P q.

3. f has bounded variation if TV pfq ă 8.

We can give some examples and non-examples.

Example. 1. If f is non-decreasing, then TV pfq “ fpbq ´ fpaq.

2. Lipschitz functions have bounded variation. More precisely, suppose
there is a positive real M so that |fpxq ´ fpyq| ď M |x ´ y| whenever
x, y P ra, bs. Then, TV pfq ă 8.

Non-Example. When 0 ď x ď 1, let

fpxq “

"

x cospπx q x ‰ 0
0 x “ 0
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For each n P N, let

Pn “ p0,
1

n` 1
,

1

n
, . . . ,

1

3
,
1

2
, 1q.

Then,

V pf, Pnq “ 1` 2
n`1
ÿ

j“2

1

j
.

So, TV pfq “ 8.
The main result about functions with bounded variation that we will use

is that they can be written as the difference of two monotonic functions.

Theorem 59. f : ra, bs Ñ R has bounded variation if and only if it can be
expressed as a difference of non-decreasing functions.

We will skip the proof in class, but for completeness I will include the
proof in the notes.

Proof. To prove this, we start by defining the total variation function x ÞÑ
TV

`

fra,xs
˘

, which is defined to be the total variation of f restricted to the
interval ra, xs. We can immediately see several properties of this function.

1. If a ă x ă b, then

TV pfq “ TV pf |ra,xsq ` TV pf |rx,bsq.

(You should convince yourself why this is the case. As a hint, try
refining all the partitions with x and see what happens.)

2. Rearranging this equation, we find that

TV
`

fra,vs
˘

´ TV
`

fra,us
˘

“ TV
`

fru,vs
˘

ě 0 for all a ď u ă v ď b,

so the total variation function is increasing.

3. Furthermore, for a ď u ă v ď b, we have

fpuq´fpvq ď |fpvq´fpuq| “ V
`

fru,vs, P
˘

ď TV
`

fru,vs
˘

“ TV
`

fra,vs
˘

´TV
`

fra,us
˘

which implies that
fpxq ` TV

`

fra,xs
˘

is also an increasing function.
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Thus, we can write

fpxq “
`

fpxq ` TV pf |ra,xsq
˘

´ TV pf |ra,xsq

as the difference of two increasing functions.
To prove the converse direction, it suffices to note that if f “ g ´ h for

non-decreasing functions g and h, then for any partition P of ra, bs

V pf, P q ď pgpbq ´ gpaqq ` phpbq ´ hpaqq,

which immediately implies that f has bounded total variation.

Corollary 16. Every function of bounded variation is differentiable almost
everywhere.

5.3 Absolutely continuous functions

At this point, we have proven the fundamental inequality of calculus for a
wide class of functions, which are those of bounded variation. However, we
have also seen that this inequality need not be an inequality and so it is
natural to ask the following question:

“When does the fundamental theorem of calculus hold?”
It turns out that in order to answer this question, we need to define the

notion of absolute continuity.

Definition 42. Suppose f : ra, bs Ñ R. f is absolutely continuous if for
every ε ą 0 there is a δ ą 0 so that

ÿ

jďn

|fpyjq ´ fpxjq| ă ε

whenever px0, y0q, . . ., pxn, ynq are disjoint subintervals of ra, bs so that

ÿ

jďn

pyj ´ xjq ă δ.

In essence, absolute continuity is a stronger form of uniform continuity
where you also require the total change in a function to be small when you
take the union of many small intervals (whose total size is less than δ). The
main result of this section is the following.

Theorem 60. Suppose f : ra, bs Ñ R is absolutely continuous. Then:
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1. f is differentiable a.e.

2. f 1 is integrable.

3.
ş

ra,bs f
1 dµ “ fpbq ´ fpaq.

However, before we prove this, let us first discuss absolute continuity in
a bit more detail.

Example. Every Lipschitz continuous function is absolutely continuous.

Non-Example. The Cantor-Lebesgue function is not absolutely continuous.

Proof. Consider all intervals of the form

p0.a0a1 . . . an, 0.a0 . . . an1q (base 3)

where a0, . . . , an P t0, 2u.
The length of each such interval is 1{3n`2 and there are 2n`1 such in-

tervals, so the sum of their lengths is 2n`1{3n`2 which Ñ 0 as n Ñ 8.
Furthermore, they are non-overlapping.

On the other hand, the change in φ across each such interval is φp0.a0 . . . an1q´
φp0.a0 . . . anq “ 1{2n`2. So the sum of all these changes in φ is 1{2! There-
fore, φ is not absolutely continuous.

Not all functions with bounded variation are absolutely continuous, but
all absolutely continuous functions have bounded variation.

Theorem 61. 1. Every absolutely continuous function has bounded vari-
ation.

2. In particular, every absolutely continuous function can be expressed as
the difference of two non-decreasing absolutely continuous functions.

Proof. For the first statement, suppose f : ra, bs Ñ R is absolutely continu-
ous. Then, there is a δ ą 0 so that if px0, y0q, . . ., pxn, ynq are subintervals
of ra, bs such that

1.
ÿ

jďn

pyj ´ xjq ă δ, and

2. such that pxj , yjq X pxk, ykq “ H whenever j ‰ k,

91



then we have that
ÿ

jďn

|fpyjq ´ fpxjq| ă 1.

Choose m P N so that pb´ aq2´m ă δ.

We now claim that if P is any partition of ra, bs, then V pf, P q ă 2m. To
show this, let P be a partition of ra, bs. Let Q denote the uniform partition
of ra, bs of width pb ´ aq2´m. Let I0, . . . , I2m´1 denote the subintervals of
Q. Let P 1 “ P Y Q. Then, V pf, P q ď V pf, P 1q. By the choice of m, δ,
V pf, P 1 X Ijq ă 1 for each j. Thus,

V pf, P 1q “
ÿ

jă2m

V pf, P 1 X Ijq ă 2m.

Thus, f has bounded variation.
To show the second claim, note that f has bounded variation so we set

g1pxq “ fpxq ` TV pf |ra,xsq

g2pxq “ TV pf |ra,xsq

By our previous work, g1 and g2 are non-decreasing.

We now want to show that g1 and g2 are absolutely continuous. It suffices
to show that g2 is absolutely continuous. Let ε ą 0. Choose δ ą 0 so that

ÿ

jăn

|fpyjq ´ fpxjq| ă ε{2

whenever px0, y0q, . . ., pxn, ynq are non-overlapping subintervals of ra, bs so
that the sum of their lengths is smaller than δ.

Now, suppose px0, y0q, . . ., pxn, ynq are non-overlapping subintervals of
ra, bs so that the sum of their lengths is smaller than δ. We want to show
that

ÿ

jďn

|g2pyjq ´ g2pxjq| ă ε.

To do so, we use the fact that

g2pyjq ´ g2pxjq “ TV pf |ra,yjsq ´ TV pf |ra,xjsq “ TV pf |rxj ,yjsq.

If Pj is a partition of rxj , yjs for each j ď n, then by the choice of δ,
ÿ

jďn

V pf, Pjq ă ε{2

92



So,
ÿ

jďn

TV pf |rxj ,yjsq ď ε{2 ă ε.

With this fact, we can now establish a lemma that gets us most of the
way to Theorem 60.

Lemma 18. Suppose f : ra, bs Ñ R is absolutely continuous. Then, tDiff2´npfqu
8
n“0

is uniformly integrable.

Proof. Suppose f is absolutely continuous. Without loss of generality, we
can suppose f is non-decreasing. Let ε ą 0 and choose δ ą 0 as in the
definition of absolute continuity for ε{2.

Suppose n P N, and set h “ 2´n. Now let E is a measurable subset of
ra, bs so that µpEq ă δ{2. Then, there is an open set U so that U Ě E
and µpUq ă δ. There is a pairwise disjoint family of bounded open intervals
tpcj , djqujPF so that U “

Ť

jPF pcj , djq. Then:

ż

E
Diffhpfq dµ “

ż

U
Diffhpfq dµ

“
ÿ

jPF

ż

pcj ,djq
Diffhpfq dµ

“
ÿ

jPF

rAvhpdjq ´Avhpcjqs

“
1

h

ÿ

jPF

ż h

0
rfpdj ` tq ´ fpcj ` tqs dµptq

If F 1 Ď F is finite, then

1

h

ÿ

jPF 1

ż h

0
rfpdj ` tq ´ fpcj ` tqs dµptq “

1

h

ż h

0

ÿ

jPF 1

|fpdj ` tq ´ fpcj ` tq| dµptq

ă
1

h
h
ε

2
“ ε{2.

Thus,
1

h

ÿ

jPF

ż h

0
rfpdj ` tq ´ fpcj ` tqs dµptq ď ε{2 ă ε.
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Using this lemma, we can now prove the main result from this section.

Proof. The first claim follows immediately from the fact that f has bounded
variation.

(2) and (3): By the Lemma, tDiff2´npfqu
8
n“0 is uniformly integrable.

Furthermore,

lim
nÑ8

Diff2´npfq “ f 1 a.e. by the first claim.

By the Vitali Convergence Theorem, f 1 is integrable and
ż

ra,bs
f 1 dµ “ lim

nÑ8

ż

ra,bs
Diff2´npfq dµ.

However,

lim
nÑ8

ż

ra,bs
Diff2´npfq dµ “ lim

nÑ8
Av2´npfqpbq ´Av2´npfqpaq “ fpbq ´ fpaq.

5.4 Indefinite Integrals and the Fundamental The-
orem of Calculus

We can now use our work to define the notion of the indefinite integral.

Definition 43. Suppose f, g : ra, bs Ñ R. We say that f is the indefinite
integral of g if g is integrable and

fpxq “ fpaq `

ż

ra,xs
g dµ

for all x P ra, bs.

Theorem 62. Suppose f : ra, bs Ñ R. Then, f is absolutely continuous if
and only if f is the indefinite integral of a function on ra, bs.

Proof. pñq: By Theorem 60.

pðq: Suppose g : ra, bs Ñ R is integrable and

fpxq “ fpaq `

ż

ra,xs
g dµ
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for all x P ra, bs. Let ε ą 0.
By a homework exercise, there is a δ ą 0 so that

ż

E
|g| dµ ă ε

whenever E is a measurable subset of ra, bs with µpEq ă δ. Suppose

px0, y0q, . . . , pxn, ynq

are non-overlapping subintervals of ra, bs so that the sum of their lengths is
smaller than δ. Set

E “
ď

j

pxj , yjq.

Then:

ÿ

jďn

|fpyjq ´ fpxjq| “
ÿ

jďn

ˇ

ˇ

ˇ

ˇ

ˇ

ż

rxj ,yjs
g dµ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

jďn

ż

rxj ,yjs
|g| dµ

“

ż

E
|g| dµ ă ε.

For monotone functions, we can state this result a bit differently.

Theorem 63. Suppose f : ra, bs Ñ R is monotone. Then, f is absolutely
continuous if and only if

ż

ra,bs
f 1 dµ “ fpbq ´ fpaq.

Proof. Before proving this, it is worth noting that f being monotonic implies
that f 1 is integrable, which implies that the left hand side is well defined.

The forward direction follows immediately from Theorem 60.

For the converse direction, we suppose, without loss of generality, f is
non-decreasing.

We need to show f is absolutely continuous. To do so, it suffices to show
that f is the indefinite integral of f 1. Let x P ra, bs. On the one hand:

fpbq ´ fpaq “

ż

ra,bs
f 1 dµ “

ż x

a
f 1 dµ`

ż b

x
f 1 dµ
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But, fpbq ´ fpaq “ fpbq ´ fpxq ` fpxq ´ fpaq. So, we conclude

0 “

ż x

a
f 1 dµ´ rfpxq ´ fpaqs `

ż b

x
f 1 dµ´ rfpbq ´ fpxqs

However, since f is non-decreasing, by Proposition 58,

ż x

a
f 1 dµ ď fpxq ´ fpaq

ż b

x
f 1 dµ ď fpbq ´ fpxq

Thus, both differences in the above equation are non-positive. So,

ż x

a
f 1 dµ “ fpxq ´ fpaq

We are almost ready to prove the second form of the fundamental theo-
rem of calculus. Before doing so, we need a small lemma.

Lemma 19. Suppose f : ra, bs Ñ R is integrable Then, f “ 0 a.e. if and
only if

ż x2

x1

f dµ “ 0

whenever px1, x2q Ď ra, bs

Instead of giving a full proof of this, note that the forward direction is
immediate. For the reverse direction, note that it implies that

ş

U f dµ “ 0
for every open set U . Then, we can approximate measurable sets with open
sets to show that

ż

E
f dµ “ 0

for any measurable set. Then we can take the positive and negative parts
of f and apply Chebychev’s inequality (Theorem 40).

Theorem 64. Suppose f : ra, bs Ñ R is integrable. Then,

d

dx

ż x

a
f dµ “ fpxq a.e.
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Proof. Set

F pxq “

ż x

0
f dµ

So, F is absolutely continuous. Thus, F is differentiable a.e. When px0, x1q Ď
ra, bs, by definition F and Theorem 63

ż x1

x0

pF 1 ´ fq dµ “ 0

So by the Lemma, F 1 “ f a.e.

5.4.1 The Lebesgue Decomposition

Before concluding this chapter, let me make one further remark about func-
tions of bounded variation. This will probably not be meaningful until you
study measure theory in more depth, but it is worth noting now.

Definition 44. Suppose f : ra, bs Ñ R. f is singular if f 1 “ 0 a.e.

Given any function of bounded variation, it is possible to decompose it
as a sum of an absolutely continuous function with a singular function.

Theorem 65. Suppose f : ra, bs Ñ R has bounded variation. Then, f can
be written as the sum of an absolutely continuous function and a singular
function. This decomposition is known as the Lebesgue Decomposition.

Proof. Since f has bounded variation, f is differentiable a.e.. Set

gpxq “

ż x

a
f 1 dµ

hpxq “ fpxq ´ gpxq

Thus, g is absolutely continuous. h1 “ 0 a.e. and f “ g ` h.

5.5 A brief remark on Radon-Nikodym derivatives

In this course, we will unfortunately not be able to discuss measures other
than the Lebesgue measure. However, the real power of absolute continuity
appears when one considers more general measures, so I felt it was necessary
to include a brief remark about this.

To begin, we start with a definition of absolute continuity, not for func-
tions, but rather for measures.
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Definition 45. A measure µ on Borel subsets of the real line is absolutely
continuous with respect to the Lebesgue measure if for every measurable set
E, µpEq “ 0 implies νpEq “ 0. This is written as ν ! µ.

There is a straightforward way to create measures which are Lebesgue
absolutely continuous. To do so, one takes a non-negative measurable func-
tion f : RÑ R`, and defines the measure to be

νpEq “

ż

E
f dµ.

Example. 1. The uniform measure on r0, 1s is generated by the function
f “ χr0,1s

2. The Gaussian measure is generated from the function

fpxq “
1

σ
?

2π
e´

1
2p

x´µ
σ q

2

,

where µ and σ are parameters.

It turns out that all measures which are absolutely continuous can be
expressed in this way.

Theorem 66 (Radon-Nikodym Theorem). if ν ! µ, then there exists a
µ-measurable function1 f : R Ñ r0,8q, such that for any measurable set
E Ď R

νpEq “

ż

E
f dµ.

In this case, the function f (also written as
dν

dµ
is said to be the Radon-

Nikodym derivative of ν with respect to µ.
It is natural to ask what the relationship between absolutely continuous

functions and absolutely continuous measures are. In fact, this comes down
to the following simple fact.

Proposition 67. A finite measure ν on Borel subsets of the real line is
absolutely continuous with respect to Lebesgue measure if and only if the
point function

F pxq “ νp´8, xsq

is an absolutely continuous real function.

1More precisely, a function which is measurable with respect to the associated σ-
algebra.
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Note that if ν has total mass one, then F is simply the cumulative
distribution function. Also note that if you assume Proposition 67, then
proving Theorem 66 is essentially just a matter of appealing to Theorem
62, so you can intuitively think about the latter result as being a Radon-
Nikodym theorem in disguise.

5.5.1 An even briefer remark on the Lebesgue Decomposi-
tion theorem

The motivation for Theorem 65 might seem somewhat mysterious. In fact,
this theorem is a special case of a better known theorem for measures, which
is the following.

Theorem 68. Let µ and ν be σ-finite measures on a measurable space
pΩ,Fq. Then ν can be uniquely decomposed into ν “ νc ` νs where νc ! µ
and νs K µ.

Here, the notation νs K µ means that νs is singular with respect to µ.

Definition 46. A measure νs is singular with respect to µ if it is possible to
decompose F into two disjoint subsets Eνs and Eµ so that for any set A P Eνs,
µpAq “ 0 and for any B P Eµ, νspBq “ 0.

Out of context (and with some of the terms as yet undefined), this result
might just be word salad. However, this result, when combined with the
Radon-Nikodym theorem, give a good way to understand the relationship
between arbitrary measures on reasonable measure spaces.
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Chapter 6

Convex functions

We now turn our attention to the notion of convexity.

Definition 47. Suppose f : pa, bq Ñ R where ´8 ď a ă b ď 8.

1. f is convex if

fpλx1 ` p1´ λqx2q ď λfpx1q ` p1´ λqfpx2q

whenever a ă x1, x2 ă b and 0 ď λ ď 1.

2. f is strictly convex if

fpλx1 ` p1´ λqx2q ă λfpx1q ` p1´ λqfpx2q

whenever a ă x1, x2 ă b and 0 ă λ ă 1.

3. A function is strongly convex if

fptx` p1´ tqyq ď tfpxq ` p1´ tqfpyq ´
1

2
mtp1´ tqpx´ yq2.

In other words, convex functions are those which lie below their secant
lines, strictly convex functions are those which lie strictly below their secant
lines and strongly convex functions lie below a quadratic function
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Definition 48. A function f is concave (respectively, strictly, strongly) if
´f is convex (strictly convex, strongly convex).

There are several examples of convex functions which should be familiar.

1. When p ą 0, x ÞÑ xp strictly convex if p ą 1, strictly concave if p ă 1.

2. The exponential function is strictly convex.

We can now show an alternative characterization of convexity in terms
of increasing difference quotients.

Proposition 69. f : pa, bq Ñ R is convex if and only if

fpxq ´ fpx1q

x´ x1
ď
fpx2q ´ fpxq

x2 ´ x

whenever a ă x1 ă x ă x2 ă b.

Proof. pñq: Suppose f is convex. Suppose a ă x1 ă x ă x2 ă b. Then,
there exists 0 ď λ ď 1 so that x “ λx1 ` p1´ λqx2. Thus,

fpxq ´ fpx1q

x´ x1
ď

λfpx1q ` p1´ λqfpx2q ´ fpx1q

λx1 ` p1´ λqx2 ´ x1

“
fpx2q ´ fpx1q

x2 ´ x1

Similarly:
fpx2q ´ fpx1q

x2 ´ x1
ď
fpx2q ´ fpxq

x2 ´ x
.
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pðq: Suppose
fpxq ´ fpx1q

x´ x1
ď
fpx2q ´ fpxq

x2 ´ x

whenever a ă x1 ă x ă x2 ă b. Suppose 0 ď λ ď 1. We can assume
0 ă λ ă 1. Set x “ λx1 ` p1´ λqx2. It follows that

λ “
x2 ´ x

x2 ´ x1

and that

1´ λ “
x´ x1
x2 ´ x1

.

Since 0 ă λ ă 1, x1 ă x ă x2. Thus,

fpxq ´ fpx1q

x´ x1
ď
fpx2q ´ fpxq

x2 ´ x
.

Therefore

x2 ´ x

x2 ´ x1
pfpxq ´ fpx1qq ď

x´ x1
x2 ´ x1

pfpx2q ´ fpxqq

i.e.
λpfpxq ´ fpx1qq ď p1´ λqpfpx2q ´ fpxqq.

Which rearranges to fpxq ď λfpx1q ` p1´ λqfpx2q.

6.1 The derivatives and sub-derivatives of convex
functions

One nice property of convex functions is that their derivatives satisfy several
nice properties. In order to discuss this, we first define the notion of the left
and right derivative.

Definition 49. Suppose f : pa, bq Ñ R. Suppose a ă x0 ă b.

1. B´pfqpx0q “ limhÑ0´
fpx0`hq´fpx0q

h .

B´pfq is called the left hand derivative of f .

2. B`pfqpx0q “ limhÑ0`
fpx0`hq´fpx0q

h .

B`pfq is called the right hand derivative of f .
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The reason to define these two derivatives is that they are always well
defined and increasing for convex functions.

Proposition 70. Suppose f is convex on pa, bq. Then,

1. f has left and right hand derivatives at each point in pa, bq.

2. If a ă u ă v ă b, then

B´pfqpuq ď B`pfqpuq ď
fpvq ´ fpuq

v ´ u
ď B´pfqpvq ď B`pfqpvq.

Proof. (1) : Suppose x1 ą u. By Proposition 69,

fpx1q ´ fpuq

x1 ´ u

decreases as x1 Ñ u. On the other hand, if a ă c ă u, by Proposition 69
again,

fpuq ´ fpcq

u´ c
ď
fpx1q ´ fpuq

x1 ´ u

whenever x1 ą u. Thus, B`pfqpuq exists. Similarly, B´pfqpuq exists.

(2): Proof of (1) shows that B´pfq ď B`pfq. Suppose u ă x1 ă v. By
Proposition 69,

fpuq ´ fpx1q

u´ x1
ď
fpvq ´ fpuq

v ´ u
.

Now, let x1 Ñ u`. We obtain

B`pfqpuq ď
fpvq ´ fpuq

v ´ u
.

We similarly show that

fpvq ´ fpuq

v ´ u
ď B´pfqpvq.

This result has several important corollaries. For instance, it shows that
convex functions are Lipschitz.

Corollary 17. If f is convex on I, and if ra, bs Ď I, then f is Lipschitz on
ra, bs.
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Proof. By the Proposition, if a ď x ă y ď b,

B`pfqpaq ď
fpyq ´ fpxq

y ´ x
ď B´pbq.

Set M “ maxt|B`pfqpaq|, |B´pfqpbq|u. Then, |fpxq ´ fpyq| ďM |x´ y|.

Theorem 71. Suppose f is convex on I. Then

1. f is differentiable except at countably many points of I, and

2. f 1 is non-decreasing.

Proof. By Proposition 70, B´pfq and B`pfq are non-decreasing. and B´pfq ď
B`pfq, where the inequality is strict only at the points at which f 1 does not
exist. As such, these points are in one-to-one correspondence with a pairwise
disjoint family of open intervals. When f 1px0q exists, f 1px0q “ B`pfqpx0q.
So, f is non-decreasing.

This has the following corollary.

Corollary 18 (Alexandrov’s theorem). Suppose f is convex on I. Then f
is twice differentiable almost everywhere.

In the proof of Theorem 71, the subdifferential played an important role,
so we will investigate it further now.

Definition 50. The set Bfpxq “ rB´fpxq, B`fpxqs is known as the sub-
differential of f at x.

The sub-differential plays a crucial role in the analysis of convex func-
tions. The standard definition of the sub-differential is the following.

Bfpxq “
č

zPdom f

tv | fpzq ě fpxq ` v ¨ pz ´ xqu

Note that by considering v as a vector in Euclidean space, the sub-
differential is well defined for functions f : Rn Ñ R. It turns out that the
sub-differential is always a closed and convex set. This is obvious for convex
functions in R, but holds true more generally as well.
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6.2 Jensen’s inequality

In this course, and on the qualifying exams, one of the best tools that you
have involving convex functions is Jensen’s inequality. As such, we will
spend some time discussing it now.

To begin, we note that convex functions lie above their tangent lines
(where tangent is defined to be any point in the sub-differential).

Lemma 20. Suppose f is convex on pa, bq and that a ă x0 ă b. If
B´pfqpx0q ď m ď B`pfqpx0q, then fpxq ě mpx´ x0q ` fpx0q.

Using this, we can now state and prove Jensen’s inequality.

Theorem 72. (Jensen’s Theorem): If φ is a convex function on R, and if
f , φ ˝ f integrable on E where µpEq “ 1, then

φ

ˆ
ż

E
f dµ

˙

ď

ż

E
φ ˝ f dµ.

Proof. Set α “
ş

E f dµ. Suppose B´pφqpαq ď m ď B`pfqpαq. By Lemma
20,

φpfpxqq ě mpfpxq ´ αq ` φpαq.

Now, take the integral of both sides.

Example: If f : r0, 1s Ñ R is integrable, then

ˆ
ż 1

0
f dµ

˙2

ď

ż 1

0
f2 dµ.

Question 2 (2011 Analysis Qualifying Exam, Problem 3). Let f : r0, 1s Ñ
R be continuous with fpxq ą 0 for x P r0, 1s. Show that

exp

ˆ
ż 1

0
log f

˙

ď

ż 1

0
f.

6.3 A brief remark on convex duality

Any discussion of convex functions would be incomplete without some men-
tion of convex duality. One of the fundamental properties of convex functions
is that they come in pairs.
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Definition 51 (Legendre transform). Let I Ă R be an interval, and f : I Ñ
R a function. The Legendre transform of f (denoted f˚) is the function
f˚ : I˚ Ñ R defined by

f˚ px˚q “ sup
xPI
px˚x´ fpxqq , x˚ P I˚

where the domain I˚ is defined to be

I˚ “

"

x˚ P R : sup
xPI
px˚x´ fpxqq ă 8

*

Proposition 73. The Legendre transform of any function is a convex func-
tion.

Proof. Let p and q be two points in the domain I˚ where f˚ is defined and
let t be within r0, 1s. Then,

f˚ ptp` p1´ tqqq “ sup
x
tx rtp` p1´ tqqs ´ fpxqu

“ sup
x
tt rxp´ fpxqs ` p1´ tq rxq ´ fpxqsu

ď t sup
x
txp1 ´ fpxqu ` p1´ tq sup

x
txq ´ fpxqu

“ tf˚ ppq ` p1´ tqf˚ pqq .

For convex functions, it turns out that this transformation is involutive.
We will not prove this here because I was not able to find a good proof using
only what we’ve covered thus far.

Proposition 74. A function is convex iff f˚˚ “ f.

There is a lot more that can be said about the Legendre transform.
For instance, there is a deep relationship between the sub-gradients of the
Legendre pair.

Furthermore, this duality appears throughout mathematics. To give a
short and very incomplete list, the it shows up in

1. Mathematical Physics (Classical mechanics, thermodynamics . . . )

2. Optimal transport (see Chapter 5 of [Vil09])

3. Mirror symmetry (in particular, T-duality [Leu05]).
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Chapter 7

Basics of functional analysis

In analysis, we will often want to establish quantitative control over our
functions. For instance, if we are studying a surface of the ocean, we want
to understand how large the waves are and how smooth or rough the chop
is. In order to do that, it is necessary to develop a more complete theory of
how to bound functions. In this chapter, we cover some preliminary ideas
in this direction, which lay the groundwork for modern functional analysis.

7.1 Normed linear spaces and Banach spaces

Definition 52. Suppose V is a vector space over R. A norm on V is a
function } ¨ } : V Ñ r0,8q so that

• }αv} “ |α|}v} for all α P R and all v P V . (Homogeneity)

• For all v P V , if }v} “ 0, then v “ 0. (Positivity)

• For all u, v P V , }u` v} ď }u} ` }v}. (The triangle inequality)

Definition 53. A normed linear space consists of a vector space together
with a norm.

Example. 1. Rn with its usual norm is a normed linear space.

2. Let Cr0, 1s denote the space of all continuous functions

f : r0, 1s Ñ R.

Cr0, 1s is a vector space under the usual pointwise addition and scalar
multiplication. For each f P Cr0, 1s, we let

}f}sup “ maxt|fptq| : t P r0, 1su.
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It follows that }f}sup is a norm on Cr0, 1s.

3. Integrable functions with the norm

}f}1 “

ż

|f | dµ.

The reason for the “1” in the subscript of the previous norm will soon
become clear. The examples that we will be interested in are mostly function
spaces such as the latter two spaces, as much of what will say is trivial for
finite dimensional spaces.

The main reason to study normed linear spaces is that they induce a
notion of convergence.

Definition 54. Suppose V is a normed linear space, and suppose tvnu
8
n“0

is a sequence of vectors.

1. We say that tvnu
8
n“0 converges in V (or converges in norm) if there is

a vector v P V so that limnÑ8 }vn ´ v} “ 0.

2. We say that tvnu
8
n“0 is Cauchy if for every ε ą 0 there is an N P N

so that }vn ´ vm} ă ε whenever m,n ě N .

In this class we will not cover notions of convergence other than conver-
gence in norm, but you may well do so in future classes so we will use the
correct terminology from the start.

There is a relationship between convergent sequences and Cauchy se-
quences, which should hopefully be familiar from a previous course in anal-
ysis.

Proposition 75. Suppose V is a normed linear space, and suppose tvnu
8
n“0

is a sequence of vectors in V

1. If tvnu
8
n“0 converges in V , then there is exactly one vector v in V so

that limnÑ8 }vn ´ v} “ 0; denote this vector by limnÑ8 vn.

2. If tvnu
8
n“0 converges in V , then it is Cauchy.

3. Suppose tvnu
8
n“0 is Cauchy. If a subsequence of tvnu

8
n“0 converges in

V , then tvnu
8
n“0 converges in V .

Definition 55. A normed linear space is complete if all of its Cauchy se-
quences converge; in this case we say that it is a Banach space.

Example. Cr0, 1s with the supremum norm is a Banach space.
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Exercise 16. Show this fact. Hint: Use uniform convergence.

Non-Example. Cr0, 1s with the norm

}f}L2 “

d

ż

f2 dµ

is an incomplete normed linear space.

Exercise 17. Find a Cauchy sequence in this space which does not converge.

Before moving on, let us mention two lemmas which will be useful some
future considerations.

Lemma 21. Suppose V is a normed linear space, and suppose tvnu
8
n“0

is a Cauchy sequence of vectors in V . Suppose taju
8
j“0 is a sequence of

positive reals that converges to 0. Then, there exist n0 ă n1 ă . . . so that
}vn2j ´ vn2j`1} ă aj for all j P N.

The proof is left as a small exercise.

Lemma 22. Suppose tvnu
8
n“0 is a convergent sequence of vectors in a

normed linear space V and that v denotes its limit. Then, limnÑ8 }vn} “
}v}.

Proof sketch: Observe that

|}vn} ´ }v}| ď }vn ´ v}.

7.2 Lp spaces

Definition 56. Suppose E is a measurable set of reals. Suppose 1 ď p ă 8.

1. LppEq consists of all measurable f : E Ñ r´8,8s so that

ż

E
|f |p dµ ă 8

2. When f P LppEq, let

}f}p “

ˆ
ż

E
|f |p dµ

˙1{p
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Before moving on, we make a few remarks. First, note that L1pEq con-
sists of all integrable functions on E.

Furthermore, when f, g P LppEq and f “ g a.e., we identify f and g.
As such, Lp spaces are really equivalence classes of functions rather than
functions.

There is also an  L8-norm. However, in order to define it, we need to
define some more terminology

Definition 57. Suppose S Ď R.

1. M P p´8,8s is an essential upper bound on S if M ą a for almost
all a P S.

2. The essential supremum of S is the greatest lower bound of the set of
all essential upper bounds of S.

Exercise 18. To make sense of this defintion, consider the following space

r0, 1q Y t3, 4, 5u.

What is its essential supremum?

With this definition, we can define the L8 norm.

Definition 58. Suppose E is a measurable set of reals.

1. L8pEq consists of all measurable f : E Ñ r´8,8s so that the essential
supremum of ranp|f |q is finite.

2. When f P L8pEq, let }f}8 denote the essential supremum of f .

The relationship between Lp functions and L8 ones can be a bit subtle.
Here is an exercise to help think about it.

Exercise 19. Suppose f is measurable and satisfies

ż 1

0
expp|fpxq|qdx ă 8

Prove that f P Lppr0, 1sq for all 1 ď p ă 8. Is it true that such an f must
necessarily belong to L8pr0, 1sq?
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7.3 Conjugate exponents and some fundamental
inequalities

One of the most important features of the Lp-spaces is that they come in
conjugate pairs and satisfy several fundamental inequalities.

Definition 59. Suppose 1 ď p, q ď 8. We say that p, q are conjugate if
1
p `

1
q “ 1.

Example. 1. 1 and 8 are conjugate.

2. 2 and 2 are conjugate.

3. 3 and 3
2 are conjugate.

Using some algebra, we can observe two basic, but very important ob-
servations

Observation 6. 1. If q, p P R are conjugate then q “ p{pp´ 1q.

2. If p, q are conjugate, and if p ą 2, then 1 ď q ă 2.

7.3.1 Young’s inequality and the Peter-Paul version

Theorem 76 (Young’s Inequality). If p, q are conjugate then

ab ď
ap

p
`
bq

q

for all reals a, b ě 0.

Proof. Without loss of generality, we can consider a, b ‰ 0. Set: s1 “ p lnpaq
and s2 “ q lnpbq. Since exp is convex,

es1{p`s2{q ď
1

p
es1 `

1

q
es2

“
1

p
ap `

1

q
bq

But, ab “ es1{p`s2{q.

Oftentimes in analysis, it will be useful to use a slightly different version
of this inequality, which is known as the Peter-Paul inequality. The basic
idea is that you “rob Peter in order to pay Paul”. In other words, you gain
tighter control of the second term at the expense at the cost of losing some
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control of the first term. For the case p “ q “ 2, this inequality is the
following.

ab ď
a2

2ε
`
εb2

2
. (7.1)

7.3.2 Holder’s Inequality

Theorem 77. (Hölder’s inequality): Suppose E is a measurable set of reals.
Suppose p, q are conjugate, f P LppEq, and g P LqpEq. Then, fg P L1pEq
and

}fg}1 ď }f}p}g}q

Proof. We assume that 0 ă }f}p, }f}q, or else the proof is trivial.
Case 1: If one of p, q is infinite, then the inequality holds directly from

the monotonicity of the integral.‘
Case 2: p, q ă 8.

Claim 1:
|f |

}f}p

|g|

}g}q
ď

1

p

|f |p

}f}pp
`

1

q

|g|q

}g}qq
.

Proof Claim 1: By Young’s Inequality.

Claim 2:
ż

E

|f ||g|

}f}p}g}q
ď 1.

Proof Claim 2: By Claim 1,

ż

E

|f |

}f}p

|g|

}g}q
dµ ď

1

p

ż

E

|f |p

}f}pp
dµ`

ż

E

1

q

|g|q

}g}qq
dµ

“
1

p
`

1

q
“ 1.

˝Claim 2.

The theorem now follows directly from Claim 2.

Holder’s inequality is saturated in by the conjugate function, which is
the following.
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Proposition 78. If f is not identically 0, the function 2f˚ “ }f}1´pp ¨sgnpfq¨
|f |p´1 belongs to LqpX,µq and satisfies

ż

E
f ¨ f˚ “ }f}p and }f˚}q “ 1.

Here, sgnpfq is the function which is 1 whenever f is non-negative and ´1
whenever f is negative so that sgnpfq ¨ f “ |f | a.e.

This is a favorite topic of the people who write the qualifying exam.

Exercise 20 (Fall 2021 Qual: Problem 4). Let f P LppRq, }f}p ‰ 0. Prove
that there exists a g P LqpRq such that }g}q “ 1 and

ż

R
fpxqgpxqdx “

1

2
}f}p.

The case of Holder’s inequality with p “ q “ 2 is of particular impor-
tance, and is better known as the Cauchy-Schwarz inequality.

Corollary 19 (Cauchy-Schwarz inequality). If E is a measurable set of
reals, and if f, g P L2pEq, then }fg}1 ď }f}2}g}2.

7.3.3 Minkowski’s inequality

Theorem 79. Suppose E is a measurable set of reals, 1 ď p ď 8, and
f, g P LppEq. Then,

}f ` g}p ď }f}p ` }g}p

Proof. WLOG p ă 8. Let q be conjugate of p.

Claim 1: pf ` gqp “ fpf ` gqp{q ` gpf ` gqp{q.

To see this, note that since p, q are conjugate, p´ 1 “ p
q . So

pf ` gqp “ fpf ` gqp´1 ` gpf ` gqp´1

“ fpf ` gqp{q ` gpf ` gqp{q.

Claim 2:
}f ` g}pp ď }|f ` g|

p{q}q}f}p ` }g}pq.

Proof Claim 2: By Claim 1 and the triangle inequality,

|f ` g|p ď |f ||f ` g|p{q ` |g||f ` g|p{q.
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Thus,
ż

E
|f ` g|p dµ ď

ż

E
|f ||f ` g|p{q ` dµ

ż

E
|g||f ` g|p{q dµ

Note that |f`g|p{q P LqpEq. So, by Hölder’s Inequality, |f ||f`g|p{q P L1pEq
and |g||f ` g|p{q P L1pEq and
ż

E
|f ||f ` g|p{q dµ`

ż

E
|g||f ` g|p{q dµ “ }|f ||f ` g|p{q}1 ` }|g||f ` g|

p{q}1

ď }f}p}|f ` q|
p{q}q ` }g}p}|f ` g|

p{q}q.

Finally, we can show the desired inequality.

}f ` g}p ď }f}p ` }g}p.

To see this, note that by Claim 2,

}f ` g}pp}|f ` g|
p{q}´1q ď }f}p ` }g}p

But,

}f ` g}pp}|f ` g|
p{q}´1q “

ˆ
ż

E
pf ` gqp dµ

˙1´1{q

“ }f ` g}p.

This has the following important corollary, which is that Lp spaces form
a normed linear space.

Corollary 20. If E is a measurable set of reals, and if 1 ď p ď 8, then
LppEq is a normed linear space.

Before moving on, it is worthwhile to write out some functions which are
in various Lp-spaces.

Example. 1. Set E “ p0, 1s. Suppose 1 ď p1 ă p2 ă 8. Choose α so
that ´1{p1 ă α ă ´1{p2. Set fpxq “ xα when 0 ă x ď 1. It follows
that f P Lp2pEq ´ Lp1pEq.

2. Set E “ p0,8q. For all x ą 0, let

fpxq “
x´1{2

1` lnpxq

It follows that f P LppEq iff p “ 2. Proof sketch: use change of
variables u “ 1` lnpxq. When p ą 2,

ş8

1 |fpxq|
pdx “ 8. When p ă 2,

ş1
0 |fpxq|

pdx “ 8.
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7.3.4 Embeddings of Lp-spaces

Theorem 80. Suppose µpEq ă 8 and 1 ď p1 ă p2 ă 8. Then, Lp2pEq Ď
Lp1pEq.

Proof. Set p “ p2{p1 ą 1. Let f P Lp2pEq. Thus, |f |p1 P LppEq. Set q “ p´1
p

so that p, q are conjugate. Set g “ χE . Since µpEq ă 8, g P LqpEq. So,

ż

E
|f |p1 dµ “

ż

E
|f |p1g dµ

ď }|f |p1}p}g}q

“ }}f
p1
p2 µpEq

q ă 8.

Thus, f P Lp1pEq.

7.3.4.1 Interpolation of Lp spaces

On R, none of the Lp spaces are subspaces of others. However, there is a
foundational result which states that if f P Lp0 X Lp1 for p0 ă p1, it is also
in Lq for all q with p0 ă q ă p1 and we can estimate the Lq norm in terms
of the Lp0- and Lp1-norms.

To explain this result, we first introduce some notation.

Definition 60. Let p0, p1 be two numbers such that 0 ă p0 ă p1 ď 8. Then
for 0 ă θ ă 1 define pθ by: 1

pθ
“ 1´θ

p0
` θ

p1
.

Theorem 81. Each f P Lp0 X Lp1 satisfies:

}f}pθ ď }f}
1´θ
p0 }f}

θ
p1 .
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Proof. Consider |f | “ |f |θ|f |1´θ and apply Holder’s inequality:
ż

|f |pθ “

ż

´

|f |θ|f |1´θ
¯pθ

(7.2)

“

ż

|f |θpθ |f |p1´θqpθ (7.3)

ď

ˆ
ż

´

|f |θpθ
¯

p1
θpθ

˙

θpθ
p1

ˆ
ż

´

|f |p1´θqpθ
¯

p0
p1´θqpθ

˙

p1´θqpθ
p0

(7.4)

“

ˆ
ż

|f |p1
˙

θpθ
p1

ˆ
ż

|f |p0
˙

p1´θqpθ
p0

(7.5)

“

ˆ
ż

|f |p1
˙

θpθ
p1

ˆ
ż

|f |p0
˙

p1´θqpθ
p0

(7.6)

“ }f}θpθp1 }f}
p1´θqpθ
p0 (7.7)

Then take the pθ-th roots of both sides.

7.4 Lp and pointwise convergence

We can now discuss the relationship between convergence in Lp and usual
pointwise convergence of functions.

Theorem 82. Suppose 1 ď p ď 8 and E is a measurable set of reals. Then,
every Cauchy sequence of vectors in LppEq has a subsequence that converges
pointwise almost everywhere.

Proof. Suppose tfnu
8
n“0 is a Cauchy sequence of vectors in LppEq. By

Lemma 21, there is a sequence n0 ă n1 ă . . . so that }fnj ´ fnj`1}
p
p ă 2´2j

for all j.
For each j P N, let

Ej “ tx P E : |fnj pxq ´ fnj`1pxq|
p ą 2´ju.

Claim 1: limj fnj pxq exists if x P Ej for only finitely many j.

Proof Claim 1: Suppose x P Ej for only finitely many j. Let ε ą 0.
Choose k so that x R Ej for all j ě k and 2´k`1 ă ε. Suppose j0, j1 ě k
and j1 ą j0. Then, by the triangle inequality

|fnj pxq ´ fnj`1pxq| ď

8
ÿ

j“j0

2
´j
p

“ 2´j0`1 ď 2´k`1 ă ε.
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Figure 7.1: A sequence converging in Lp but which does not converge point-
wise and a pointwise convergent subsequence.

Claim 2: For almost every x P E, x P Ej for only finitely many j.

Proof Claim 2: By Chebychev,

µpEjq ď 2j
ż

E
|fnj ´ fnj`1 |

p dµ ă 2´j .

So
ř

j µpEjq ă 8. By Borel-Cantelli, Claim 2 follows.

Note that the passing to a subsequence might be necessary. It is possible
to find sequences which converge to zero in Lp but do not converge pointwise.
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Similarly, it is possible to construct families of functions which converge
pointwise but do not converge in Lp.

Example 2. 1. fn “ χrn,n`1s

2. fn “ nχp0, 1
n
s

Lemma 23. Suppose E is a measurable set of reals. Suppose 1 ď p ă 8.
Suppose

ř8
n“0 }fn}p ă 8. Then:

1.
ř8
n“0 fn converges almost everywhere.

2. If f “
ř8
n“0 fn, then f P LppEq and limmÑ8 }f ´

řm
n“0 fn}p “ 0 and

}f}p ď
ř8
n“0 }fn}p.

Proof. (2): Suppose f “
ř8
n“0 fn. Set:

gm “

m
ÿ

n“0

|fn|

g “ lim
mÑ8

gm

Claim 1: g P LppEq and limmÑ8 }gm ´ g}p “ 0.

By definition, |gm|
p ď |gm`1|

p. So, by MCT

lim
mÑ8

ż

E
|gm|

p dµ “

ż

E
|g|p dµ.

i.e.

lim
mÑ8

ż

E
}gm}

p
p “ }g}

p
p.

But,

}gm}p ď
m
ÿ

n“0

}fn}p.

Thus, }g}p ă 8 since
ř8
n“0 }fn}p.

If m P N, then

}g ´ gm}
p
p “

ż

E
lim
kÑ8

ˇ

ˇ

ˇ

ˇ

ˇ

m`k
ÿ

n“m

|fn|

ˇ

ˇ

ˇ

ˇ

ˇ

p

dµ

“ lim
kÑ8

ż

E

ˇ

ˇ

ˇ

ˇ

ˇ

m`k
ÿ

n“m

|fn|

ˇ

ˇ

ˇ

ˇ

ˇ

p

dµ (MCT)

“ lim
kÑ8

}

m`k
ÿ

n“m

fn}
p
p
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So,

}g ´ gm}p “ lim
kÑ8

}

m`k
ÿ

n“m

|fn|}p

ď lim
kÑ8

m`k
ÿ

n“m

}fn}p

“

8
ÿ

n“m

}fn}p.

Since
ř8
n“0 }fn}p ă 8, it follows that limmÑ8 }g ´ gm}p “ 0. ˝Claim 1

Claim 2:
ř8
n“0 fn converges a.e..

Proof Claim 2: Since g P LppEq, gpxq ă 8 a.e.. Let x P E so that
gpxq ă 8. When k,m P N and m ą 0,

ˇ

ˇ

ˇ

ˇ

ˇ

m`k
ÿ

n“m

fnpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď gpxq ´ gm´1pxq

It follows that the partial sums of
ř8
n“0 fnpxq form a Cauchy sequence.

Thus,
ř8
n“0 fn converges almost everywhere. ˝Claim 2.

Set f “
ř8
n“0.

Claim 3: f P LppEq.

Proof Claim 3: |f |p ď |g|p by definition. Apply Claim 2. ˝Claim 3.

Claim 4: limmÑ8 }f ´
řm
n“0 fn}p “ 0.

Proof Claim 4: Again, by MCT we have that

}f ´
m
ÿ

n“0

fn}p ď }g ´ gm}p.

Apply Claim 2. ˝Claim 4

Claim 5: }f}p ď
ř8
n“0 }fn}p.

Proof Claim 5: By Claim 4 and Lemma 22.
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Theorem 83. LppEq a Banach space

Proof. Suppose tfnu
8
n“0 is a Cauchy sequence in LppEq. Choose a sequence

n0 ă n1 ă . . . so that }fnj`1 ´ fnj}p ď 2´j . Set f “ fn0 `
ř8
j“0 fnj`1 ´ fnj .

By Lemma 23, f P LppEq and limmÑ8 }f´pfn0`
řm
j“0 fnj q}p “ 0. However,

f´pfn0`
řm
j“0 fnj q “ f´fnj`1 . Thus limjÑ8 }f´fnj}p “ 0. Since tfnu

8
n“0

is a Cauchy sequence, limnÑ8 }fn ´ f}p “ 0 (see Proposition 75).

7.5 Approximations and Separability

One major strategy in analysis is to try to approximate functions of one
class by those with better properties. This is a version of Littlewood’s
second principle, but it has many applications (e.g., the continuity method,
using test functions to define distributions, etc.). Here, we are able to make
this idea precise, using the notion of dense subsets.

Definition 61. Let X be a normed linear space with norm } ¨ }. Given two
subsets F and G of X with F Ď G, we say that F is dense in G, provided
for each function g in G and ε ą 0, there is a function f in F for which
}f ´ g} ă ε.

Example 3. 1. The rational numbers Q are dense in the real numbers
R.

2. Weierstrauss’ theorem shows that the space of polynomials is dense
inside Cra, bs for any bounded interval.

There is an important principle, which is often useful:

Observation 7. If F is dense in G and G is dense in H, then F is dense
in H.

Proposition 84. Let E be a measurable set and 1 ď p ď 8. Then the
subspace of simple functions in LppEq is dense in LppEq.

Proof. Suppose that g P LppEq. First consider the case p “ 8. There is a
subset E0 of E of measure zero for which g is bounded on E „ E0. From the
Simple Approximation Lemma, we find that there is a sequence of simple
functions on E „ E0 that converge uniformly on E „ E0 to g. Therefore,
these functions converge with respect to the L8pEq norm. Thus the simple
functions are dense in L8pEq.
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Now suppose 1 ď p ă 8. The function g is measurable and therefore,
by the Simple Approximation Theorem, there is a sequence tϕnu of simple
functions on E such that tϕnu Ñ g pointwise on E and

|ϕn| ď |g| on E for all n.

By comparison, we see that ϕn P L
ppEq for all n. Claim 1: tϕnu Ñ g in

LppEq. Proof of claim 1: For all n

|ϕn ´ g|
p
ď 2p t|ϕn|

p
` |g|pu ď 2p`1|g|p on E.

Since |g|p is integrable over E, we infer from the Lebesgue Dominated Con-
vergence Theorem that tϕnu Ñ g in LppEq.

Proposition 85. Let ra, bs be a closed, bounded interval and 1 ď p ă 8.
Then the subspace of step functions on ra, bs is dense in Lpra, bs.

The proof of this is essentially the same as the proof of Proposition 54,
so we will omit the proof.

Definition 62. A topological space is separable if it admits a dense count-
able subset.

Example 4. The real numbers are separable (which is something you are
probably tired of hearing by this point in the course).

Proposition 86. Let E be a measurable subset. The space LppEq is sepa-
rable for 1 ď p ă 8

Proof. (Sketch) On the interval r´n, ns, consider the space Fn of step func-
tions which take rational values and whose jumps occur at rational numbers
and which are defined to be identically zero outside this interval. We con-
sider the union

F “
ď

n

Fn.

By our previous work, F is a countable collection of functions that is
dense in LppRq. Finally, let E be a general measurable set. Then the
restrictions of functions in F to E is a countable dense subset of LppEq.

Corollary 21. CcpEq is dense in LppEq

On the other hand L8pRq is not separable (see the book for details.)
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7.6 The duality of Lp

We have already seen that the conjugate exponents appear in pairs. In this
section, we will discuss this duality in a little more depth. We start with
some definitions.

7.6.1 Bounded and continuous functionals

Definition 63. Suppose V is a vector space. A linear functional on V is a
map T : V Ñ R such that for all g, h P V , α, β P R,

T pαg ` βhq “ αT pgq ` βT phq.

Note that the collection of linear functionals on V is itself a vector space.
We can give a few examples.

Example 5. 1. If V “ Rn, the space of linear functionals is simply the
space of linear functions.

2. Suppose E is measurable, 1 ď p ă 8 and 1
p `

1
q “ 1. For g P LqpEq,

we define the functional T : LppEq Ñ R by

T pfq “

ż

E
fg dµ

for f P LppEq. Using Holder’s inequality, we know that |Tf | ď
}f}p}g}q, so T pfq is well defined.

For normed spaces, we can also discuss the notion of a bounded linear
functional.

Definition 64. For a normed linear space X, a linear functional T is said
to be bounded provided there is an M ě 0 for which

|T pfq| ďM}f} for all f P X.

The infimum of the upper-bounds is known as the norm of T and is
denoted by }T }˚.

Exercise 21. Show that }T }˚ “ sup tTf | f P X, }f} ď 1u “ sup tTf | f P X, }f} “ 1u

From this, we have the following.

Proposition 87. The function }¨}˚ is a norm, and the collection of bounded
linear functionals on V is a normed linear space, which is denoted V ˚.
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Proof. It is immediate that }λT }˚ “ λ}T }˚ and that }T }˚ “ 0 if and only if
T ” 0. What remains to show is that

}S ` T }˚ ď }S}˚ ` }T }˚.

To see this, we use the following observation.

}S ` T }˚ “ sup tpS ` T qf | f P X, }f} “ 1u

ď sup tSf | f P X, }f} “ 1u ` sup tTf | f P X, }f} “ 1u

“ r}S}˚ ` r}T }˚.

One immediate consequence of a linear functional being bounded is the
following inequality, which holds for any f, h P X :

|T pfq ´ T phq| ď }T }˚}f ´ h}.

From this, it immediately follows that bounded linear functionals are
continuous. In other words, whenever a linear functional is bounded, it is
also continuous. At first, this might seem like a strange statement, because
if you are used to finite dimensional linear algebra, all linear functionals are
both continuous and bounded. As such, it’s important to keep in mind that
things are more complicated for function spaces, which are generally infinite
dimensional. Actually, a linear functional being bounded is equivalent to its
continuity.

Proposition 88. For a linear functional T in a normed linear space V , the
following conditions are equivalent.

1. T is bounded.

2. T is continuous.

3. T is continuous at one point of V.

Let us now focus on the case where V is LppEq, and try to understand
the dual space V ˚.

Proposition 89. Let E be measurable and 1 ď p ă 8. Suppose that q is
conjugate to p and that g P LqpEq.

Define Tg : LppEq Ñ R by Tgpfq “
ş

E fgd mu.
Then Tg P pL

ppEqq˚ and }T }˚ “ }g}q
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Proof. Hölder’s inequality shows that Tg P pL
ppEqq˚ and that }T }˚ ď }g}q.

Therefore, the only thing to prove is the equality. In the case where
1 ă p ă 8, we take

f “ psgnpgqq
|g|q´1|

}g}q´1q

to be the conjugate function to g. Doing so, we have that f P Lp and that
}f}p “ 1. Furthermore, we find that

|Tgpfq| “

ż

|g|q|

}g}q´1q

“ }g}q,

which implies that
}Tg}˚ ě }g}q.

We then turn to the case where p “ 1. For the sake of contradiction, we
assume that }Tg} ă }g}8.

Then there is a set A with µpAq ą 0 for which |g| ą }Tg} on A. Then
we take f “ sgnpgq χAµpAq . Then f P L1 and }f}1 “ 1. However,

Tgpfq “

ż

fg “

ż

|g|
χA
µpAq

ą }Tg}˚,

which is a contradiction.

Before we come to the main result of this section, let us state a small
lemma which will be helpful.

Lemma 24. Let E be a measurable set, 1 ď p ă 8 and we have a function
g which is integrable on E and satisfies the following property.

There exists and M ě 0 so that
ˇ

ˇ

ˇ

ˇ

ż

E
gf

ˇ

ˇ

ˇ

ˇ

ďM}f}p

for every simple function f P LppEq.
Then g P LqpEq and }g}q ďM.

Proof. (Sketch)

1. g is finite almost everywhere since it is integrable.

2. As such, we can use the simple approximation lemma to find a sequence
of simple functions φn so that 0 ď φn ď |g| and φn Ñ |g| as nÑ8.
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3. Then we consider the function

fn “ sgnpgqφq´1n

and compute its integral against g.

4. Finally, we apply Fatou’s lemma.

We can now state and prove the main result of this section, which char-
acterizes the dual space of Lp (except when p is infinite). We start with the
case where the domain is an interval.

Theorem 90 (Riesz representation theorem). Let ra, bs be a closed, bounded
interval and 1 ď p ă 8. Suppose T is a bounded linear functional on
Lpra, bs. Then there is a function g P Lqra, bs, for which

T pfq “

ż

I
g ¨ f for all f in Lpra, bs

Proof. We will only consider the case p ą 1 (the proof of the case p “ 1 is
similar). For x in ra, bs, we define

Φpxq “ T
`

χra,xq
˘

.

Intuitively, Φ is analogous to a “cumulative distribution function” for T ,
so we can expect that Φ1 is the corresponding density (i.e., the function g
we are trying to find). However, the work in this proof will be to make this
precise.

We first show that this real-valued function Φ is absolutely continuous on
ra, bs, so that it may be differentiated almost everywhere. By the linearity
of T , for each rc, ds Ď ra, bs, since χrc,dq “ χra,dq ´ χra,cq,

Φpdq ´ Φpcq “ T
`

χra,dq
˘

´ T
`

χra,cq
˘

“ T
`

χrc,dq
˘

Thus if tpak, bkqu
n
k“1 is a finite disjoint collection of intervals in pa, bq, we

have that

n
ÿ

k“1

|Φ pbkq ´ Φ pakq| “

n
ÿ

k“1

sgn rΦ pbkq ´ Φ pakqs ¨ T
`

χrak,bkq
˘

“ T

˜

n
ÿ

k“1

sgn rΦ pbkq ´ Φ pakqs ¨ χrak,bkq

¸
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Then, we consider the simple function f “
řn
k“1 sgn rΦ pbkq ´ Φ pakqs ¨

χrak,bkq. Evaluating T pfq we find the following

|T pfq| ď }T }˚ ¨ }f}p and }f}p “

«

n
ÿ

k“1

pbk ´ akq

ff1{p

Thus,
n
ÿ

k“1

|Φ pbkq ´ Φ pakq| ď }T }˚ ¨

«

n
ÿ

k“1

pbk ´ akq

ff1{p

(7.8)

For ε ą 0, we take δ “ pε{}T }˚q
p, which implies that the left hand side

of Equation ?? is less than ε, and thus that Φ is absolutely continuous on
ra, bs.

Now that we have shown that Φ is absolutely continuous, we know that it
is differentiable almost everywhere and that the function g “ Φ1 is integrable
over ra, bs. Furthermore, by the fundamental theorem of calculus, we have
that

Φpxq “

ż x

0
g for all x P ra, bs

Therefore, for each rc, ds Ď pa, bq

T
`

χrc,dq
˘

“ Φpdq ´ Φpcq “

ż b

a
g ¨ χrc,dq.

Now all that remains to show is that the functionals T and f ÞÑ
şb
a g ¨ f

are the same. To do so, we use the density of step functions in Lp.
More precisely, since the functional T and the functional f ÞÑ

şb
a g ¨ f are

linear on the linear space of step functions, it follows that

T pfq “

ż b

a
g ¨ f for all step functions f on ra, bs

If f is a simple function on ra, bs, there is a sequence of step func-
tions tϕnu which converges to f in Lpra, bs and also is uniformly pointwise
bounded on ra, bs. Since the linear functional T is bounded on Lpra, bs, it
follows from the continuity of the functional that

lim
nÑ8

T pϕnq “ T pfq

On the other hand, the Lebesgue Dominated Convergence Theorem implies
that

lim
nÑ8

ż b

a
g ¨ ϕn “

ż b

a
g ¨ f
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Therefore

T pfq “

ż b

a
g ¨ f for all simple functions f on ra, bs

Since T is bounded,

ˇ

ˇ

ˇ

ˇ

ż b

a
g ¨ f

ˇ

ˇ

ˇ

ˇ

“ |T pfq| ď }T }˚ ¨ }f}p for all simple functions f on ra, bs.

According to Lemma 24, g belongs to Lqra, bs so the linear functional f ÞÑ
şb
a g ¨ f is bounded on Lpra, bs. This functional agrees with the bounded

functional T on the simple functions, which is a dense subspace of Lpra, bs,
so these two functionals agree on all of Lpra, bs.

In fact, this result holds for general measurable sets, not just intervals.

Theorem 91 (The Riesz Representation Theorem for the Dual of L ppEq).
Let E be a measurable set, 1 ď p ă 8, and q the conjugate of p. For each
g P LqpEq, define the bounded linear functional Rg on LppEq by

Rgpfq “

ż

E
g ¨ f for all f in LppEq

Then for each bounded linear functional T on LppEq, there is a unique func-
tion g P LqpEq for which

Rg “ T, and }T }˚ “ }g}q

Observation 8. Remark Let ra, bs be a nondegenerate closed, bounded in-
terval. Hölder’s Inequality shows that if f belongs to L1ra, bs, then the func-

tional g ÞÑ
şb
a f ¨g is a bounded linear functional on L8ra, bs. However, there

are bounded linear functionals on L8ra, bs that are not of this form.

In Chapter 19 Section 3 of the book, Royden-Fitzpatrick explain a result
of Kantorovich which details the dual of L8. Feel free to look at this section
for details.

7.7 Problems

Lp spaces appear on nearly every qualifying exam, so we will spend some
time working on problems involving them.
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1. August 2020 # 2 Let 1 ă p, q ă 8 be such that 1
p `

1
q “ 1. For any

f P Lppr0, 1sq, set

gpxq “

ż x

0
fptqdt.

Prove that g P Lqpr0, 1sq and }g}q ď 2´1{q}f}p.

2. January 2020 # 4 Let f, g P L1pRq. Given n P N , define pTnfq “
fpx´ nq. Prove that

lim
nÑ8

}Tnf ` g}1 “ }f}1 ` }g}1

3. Fall 2011 # 2 Suppose f is a measurable function on r0, 1s such that
for every 1 ď p ă 8, f P Lpr0, 1s, and suppose there exists a B such
that }f}p ď B. Prove that f P L8r0, 1s.

4. Fall 2014 # 3 Let p ě 1 and pfnq be a sequence of measurable functions
in Lpr0, 1s such that limnÑ8 fnpxq “ fpxq almost everywhere. Show
that limnÑ8 }fn ´ f}p “ 0 if and only if limnÑ8 }fn}p “ }f}p

5. Fall 2016 # 1 Let f : r0, 1s Ñ R be a Lebesgue integrable function and
In “

ş1
0 |fpxq|

ndx.

(a) if }f}8 ą 1, show that limnÑ8 In is equal to 8.

(b) if }f}8 ď 1, show that limnÑ8 In exists and evaluate the limit.
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Chapter 8

Fubini and Tonelli Theorems
in Rn

In this chapter, we discuss multivariate integration and determine when it
is possible to compute a multiple integral as an iterated integral, as you saw
in multivariate calculus. This material is covered in Chapter 20 of Royden-
Fitzpatrick. Unfortunately, it uses quite a few terms that we have not yet
defined, so it might be worthwhile to read [Bal08] for more details.

8.1 A crash course in more general measures and
integration

In order to discuss this, we need to introduce measurable spaces in a bit
more generality.

Definition 65. A measure space pX,M,µq is a set X with a σ-algebra M
of subsets of X and a measure µ, which is a function µ : M Ñ r0,8s which
satisfies

1. µpHq “ 0

2. µ is countably additive.

Definition 66. A measure space is

1. finite if µpXq ă 8

2. σ-finite if X is the union of countably many sets, each of which has
finite measure.

129



3. complete if µpEq “ 0 implies that every subset of E is measurable.

Example 6. 1. The Lebesgue measure on r0, 1s is finite, σ-finite and
complete.

2. The Lebesgue measure on R is not finite, but is σ-finite and complete.

3. The Borel measure on R is σ-finite, but neither finite nor complete.

4. The counting measure on R is neither finite nor σ-finite, but is com-
plete.

8.1.1 Product measures

The goal now is define the Lebesgue measure on R2 (or Rn). To this end,
we will define the product measure from the Lebesgue measure on R. More
generally, given two measure spaces pX,A, µq and pY,B, νq, we can build a
product measure on the Cartesian product X ˆ Y .

Definition 67 (Measurable rectangles). If A Ď X and B Ď Y , we call AˆB
a rectangle. If A P A and B P B, we call AˆB a measurable rectangle.

We can define the measure of a measurable rectangle to be the product
of the measures of A and B.

Definition 68. If R “ A ˆ B is a measurable rectangle, we define the
measure of R to be λpRq “ µpAq ˆ νpBq.

Example 7. Let ra, bs Ă R and rc, ds Ă R, both induced with the Lebesgue
measure. What is λpra, bs ˆ rc, dsq?

To make sure that this definition is consistent, we’ll verify the following
lemma.

Lemma 25. Let tAk ˆBku
8
k“1 be a countable disjoint collection of measur-

able rectangles whose union also is a measurable rectangle AˆB. Then

µpAq ˆ νpBq “
8
ÿ

k“1

µ pAkq ˆ ν pBkq

Proof. Fix a point x P A. For each y P B, the point px, yq belongs to exactly
one Ak ˆBk. Therefore we have the following disjoint union:

B “
ď

tk|xPAku

Bk
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Figure 8.1: A measurable rectangle as the union of countable measurable
rectangles

By the countable additivity of the measure ν,

νpBq “
ÿ

tk|xPAku

ν pBkq

Rewriting this equality in terms of characteristic functions, we find the
following

νpBq ¨ χApxq “
8
ÿ

k“1

ν pBkq ¨ χAkpxq for all x P A

Since each Ak is contained in A, this equality also clearly holds for x P XzA.
Therefore

νpBq ¨ χA “
8
ÿ

k“1

ν pBkq ¨ χAk on X

By the Monotone Convergence Theorem,

µpAqˆνpBq “

ż

X
νpBq¨χA dµ “

8
ÿ

k“1

ż

X
ν pBkq¨χAk dµ “

8
ÿ

k“1

µ pAkqˆν pBkq
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Technically speaking, λ is actually a pre-measure, and we need to con-
sider its Caratheodory extension to define the measure. Getting into the
details of this would take several weeks, so we will not do so. However, the
Lebesgue measure is a complete outer measure, so there is a short-cut.

Definition 69. Given two measure spaces pX,A, µq and pY,B, νq and a set
E Ă X ˆ Y , we define the outer measure

pµˆ νq˚pEq “ inf
8
ÿ

k“1

λpRkq,

where the infimum is taken over all countable collections of measurable rect-
angles Rk which cover E.

Definition 70. A set E Ă X ˆ Y is measurable if

pµˆ νq˚pSq “ pµˆ νq˚pE X Sq ` pµˆ νq˚pEc X Sq

for all sets S.

Combining these, we can define the product measure.

Definition 71. The space pXˆY,measurable sets, µˆνq is a measure space,
and the measure is known as the product measure.

8.1.2 Some measurable sets

It is helpful to know a good collection of measurable sets in Rn, since our
definition of measurable makes it hard to construct them by hand. For this,
we have the following proposition.

Proposition 92. Any open subset U of R2 is measurable with respect to the
product measure.

In fact, open sets are Borel (i.e., the intersection/union/complements of
countably many measurable rectangles. However, it will not be necessary to
prove this.

As with the case in R, there are many Lebesgue measurable sets which
are not Borel. As a note of caution, measurable sets in higher dimensions
can be very complicated, so it is worthwhile to verify that you are sets are
measurable.
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8.2 Integration with respect to a general measure

Before we can discuss the Fubini and Tonelli theorems, we need to say what
it means to integrate with respect to a more general measure. The way that
this is done is essentially the same as in the one-dimensional case, by using
simple functions.

Definition 72 (Simple functions). Given a measure space pX,A, µq, a sim-
ple function s : X Ñ R is a function whose range is finite and for which the
inverse image

s´1paq “ tx P X | fpxq “ au

is a measurable set (i.e., in A) for all a P R.

Definition 73. For non-negative simple functions, we define the integral
ż

X
s dµ “

ÿ

aP rangepsq

aµps´1paqq.

Then, given a function f : X Ñ R` which is non-negative and measur-
able (i.e., the pre-image of every open set is in A), we define the integral of
f as

ż

X
f dµ “ sup

"
ż

X
s dµ | s simple and s ď f

*

.

Finally, we say that a function is integrable if both its positive and
negative parts are integrable.

8.3 Product measures and iterated integrals

We are now able to discuss the Fubini and Tonelli theorems. Before stating
these theorems, let us give one further definition.

If f : x ˆ y Ñ R is a measurable function, for x P X, we define the
function fpx, q : Y Ñ R to be the x-slice of f , For y P Y , we say that the
function fp¨, yq : X Ñ R is the y-slice of f .

Theorem 93 (Fubini’s Theorem). Let pX,A, µq and pY,B, νq be two mea-
sure spaces and ν be complete. Let f be integrable1 over X ˆ Y with respect
to the product measure µ ˆ ν. Then for almost all x P X, the x-slice of
f, fpx, ¨q, is integrable over Y with respect to ν and

ż

fdpµˆ νq “

ż
„
ż

fpx, yqdνpyq



dµpxq.

1This means that f is measurable and that
ş

XˆY
|f | dpµˆ νq ă 8.
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Theorem 94 (Tonelli’s theorem). let pX,A, µq and pY,B, νq be σ-finite mea-
sure spaces. Let f be a measurable function on XˆY with respect to pµˆνq.
If 0 ď f ď 8, then

1. for almost all x P X, the x-slice is ν-measurable,

2. for almost all y P X, the y-slice is µ-measurable,

3. the function
ş

Y fp¨, yq dνpyq is µ-measurable,

4. the function
ş

X fpx, ¨q dµpxq is ν-measurable.

5.
ż

XˆY
fdpµˆνq “

ż

X

„
ż

Y
fpx, yqdνpyq



dµpxq “

ż

Y

„
ż

X
fpx, yq dµpxq



dνpyq

The proof of Fubini and Tonelli’s theorem in Royden requires a fair
amount of background, so I recommend reading the proof in Axler [Axl20],
where it is Theorem 5.28. We will not cover the proofs in this class, but you
should read them to understand the basic idea.

Before we finish up, let us provide two examples which show why the
assumptions in these theorems are necessary.

Non-Example. 1. Prove
ş1
0

”

ş1
0

x2´y2

px2`y2q2
dy
ı

dx “ `π
4

2. Prove
ş1
0

”

ş1
0

x2´y2

px2`y2q2
dx

ı

dy “ ´π
4

3. Explain why the answer to the above parts do not violate Fubini’s the-
orem.

Proof. The function f “ x2´y2

px2`y2q2
is continuous on r0, 1s ˆ r0, 1s except at

the origin, hence is measurable.
Doing the first integral, we find that

ż 1

0

x2 ´ y2

px2 ` y2q2
dy “

„

y

x2 ` y2

1

y“0

“
1

1` x2

and
ż 1

0

ˆ
ż 1

0

x2 ´ y2

px2 ` y2q2
dy

˙

dx “

ż 1

0

1

1` x2
dx “

π

4
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Proceeding to the integral computation in the opposite order we get

ż 1

0

ˆ
ż 1

0

x2 ´ y2

px2 ` y2q2
dx

˙

dy “ ´
π

4
.

To understand why this doesn’t contradict Fubini-Tonelli, we estimate
ş

IˆI |fpx, yq|dpx, yq. We have

ż

IˆI

ˇ

ˇ

ˇ

ˇ

x2 ´ y2

px2 ` y2q2

ˇ

ˇ

ˇ

ˇ

dpx, yq ě

ż 1

0

˜

ż π{2

0

|r2 cos2pθq ´ r2 sin2pθq|

r4
rdθ

¸

dr

“

ż 1

0

ż π{2

0

| cosp2θq|

r2
rdθdr

“

ż 1

0
2

ż π{4

0

cosp2θq

r
dθdr

“ 2
1

2

ż 1

0

1

r
dθdr

“ lim r Ñ 0´ lnprq “ 8.

As such, f R L1pIˆIq, so this does not contradict Tonelli’s theorem.

It’s also good to have an example in mind of why it is necessary to
assume that the measures are σ-finite. For this, we consider the following
example, which is taken from Axler [Axl20] 5.30.

Example 8. Suppose B is the σ-algebra of Borel subsets of r0, 1s, λ is
Lebesgue measure on pr0, 1s,Bq, and µ is counting measure on pr0, 1s,Bq.
Let D denote the diagonal of r0, 1s ˆ r0, 1s; in other words,

D “ tpx, xq : x P r0, 1su.

Then
ż

r0,1s

ż

r0,1s
χDpx, yq dµpyq dλpxq “

ż

r0,1s
1 dλ “ 1,

but
ż

r0,1s

ż

r0,1s
χDpx, yq dλpxq dµpyq “

ż

r0,1s
0 dµ “ 0.
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